
COCI 2010/2011 1st round, October 23rd 2010

TASK TIMSKO PROFESOR SRETAN LJUTNJA TABOVI ŽABE

input standard input (stdin)

output standard output (stdout)

time limit 1 second 1 second 1 second 1 second 1 second 1 second

memory limit 32 MB 32 MB 32 MB 32 MB 32 MB 64 MB

30 40 70 100 120 140
total points

500

COCI 2010/2011 Task TIMSKO
1st round, October 23rd 2010 Author: Adrian Satja Kurdija

Every year, the University of Zagreb organizes a student team competition in informatics. Each team

consists of three students.

Traditionally, the best competitors from the university are girls, and they outnumber boys significantly.

This year, boys have raised their voice and a rule was made that each team must consist of exactly one

boy and two girls.

To make competitors' lives a little more difficult, the dean of the university has decided to send K of

the competitors on an internship in a distant country. Those competitors will not be able to compete.

Given the number of female competitors M, the number of male competitors N, and the number of

competitors which have to be sent on an internship K, the dean has to create the maximum number of

teams which will be able to attend the competition.

For example, if M is 6, N is 3 and K is 2, the dean can send one girl and one boy on an internship,

which leaves him with 5 girls and 2 boys. He can then create two teams from them (one girl is left

without a team).

INPUT

The first and only line of input contains three integers separated by single spaces: M (0 ≤ M ≤ 100),

the number of girls, N (0 ≤ N ≤ 100), the number of boys, and K (0 ≤ K ≤ M+N), the number of

competitors which have to be sent on an internship.

OUTPUT

The first and only line of output must contain only one number: the maximum number of teams which

can be formed.

SAMPLE TESTS

input

6 3 2

output

2

input

2 1 1

output

0

input

6 10 3

output

3

COCI 2010/2011 Task PROFESOR
1st round, October 23rd 2010 Author: Goran Gašić

In a long classroom, N desks are arranged in a single row, with two students sitting at each desk.

Students are cranky because they are about to have an art class, and their professor is planning to

examine them.

Each student has studied art, but only to a certain level. The old professor can tell by the looks on their

faces just how much they have studied. The professor, being an artist, uses a different coloured pencil

for each grade. Unfortunately, today he brought only one pencil.

In order to make the examination seem fair, he wants to choose two desks and question one student

from each desk positioned between the two desks he has chosen (including the chosen desks). It is

important that all examined students deserve the same grades, so he can write them down using

his only pencil.

The professor wants to know the maximum number of students he can examine this way, as well as

which grade the students will get.

INPUT

The first line of input contains a single integer N (1 ≤ N ≤ 100 000).

Each of the following N rows contains two integers: Ai and Bi, grades deserved by students sitting at

desk i (1 ≤ Ai, Bi ≤ 5).

OUTPUT

The first and only line of output must contain two numbers separated by a single space: the maximum

number of students the professor can examine and the grade those students will get.

If there are multiple solutions possible, output the one with the smallest grade.

SCORING

Test cases worth 70% of total points have N ≤ 100.

SAMPLE TESTS

input

1
1 5

output

1 1

input

3
3 5
4 5
1 3

output

2 5

input

4
2 1
3 2
5 3
2 5

output

2 2

COCI 2010/2011 Task SRETAN
1st round, October 23rd 2010 Author: Goran Gašić

Digits 4 and 7 are lucky, while all others are unlucky. An integer is lucky if it contains only lucky digits

in decimal notation. We would like to know the K-th lucky positive integer.

INPUT

The first and only line of input contains a positive integer K (1 ≤ K ≤ 109).

OUTPUT

The first and only line of output must contain the K-th lucky positive integer.

SAMPLE TESTS

input

1

output

4

input

2

output

7

input

3

output

44

COCI 2010/2011 Task LJUTNJA
1st round, October 23rd 2010 Author: Adrian Satja Kurdija

Children in a kindergarten have received a large sack containing M candies. It has been decided that the

candies are to be distributed among N children.

Each child has stated the number of candies that it wants. If a child isn’t given the amount of candy it

wants, it will get angry. In fact it’ll get angrier for each candy it is deprived of. Some speculate that it’s

anger will be equal to the square of the number of candy it is deprived of. For instance, if Mirko states

that he wants 32 candies but receives only 29, he would be missing 3 candies, so his anger would be

equal to 9.

Unfortunately, there is an insufficient amount of candy to satisfy all children. Therefore, the candies

should be distributed in such a way that the sum of the children’s anger is minimal.

INPUT

The first line contains two integers, M (1 ≤ M ≤ 2·109) and N (1 ≤ N ≤ 100 000).

The following N lines contain integers (one per line) which represent the wishes of the children. Those

numbers are all strictly less than 2·109, and their sum always exceeds M.

OUTPUT

The first and only line of output must contain the minimum sum of the children’s anger.

Note: The test cases will ensure that the result fits in a 64-bit unsigned integer: int64 in Pascal, long long

in C/C++, long in Java.

SCORING

Test cases worth 40% of total points have M not greater than 200 000.

Test cases worth 70% of total points have no child state that it wants more than 100 000 candies.

Test cases worth 80% of total points have at least one of the above stated constraints will be met.

SAMPLE TESTS

input

5 3
1
3
2

output

1

input

10 4
4
5
2
3

output

4

COCI 2010/2011 Task TABOVI
1st round, October 23rd 2010 Author: Matija Osrečki

Zvonkec is yet another programmer employed in a small company. Every day he has to refactor one

file of source code. Much to his dismay, the source is usually far from being clear and tidy. He is

especially bothered by uneven indentation, i.e. the number of tabulators (tabs) indenting each line.

Fortunately, his editor has a command to select a group of consecutive lines and add or delete a

character from the start of each one. Help Zvonkec tidy up the code as quickly as possible.

You are given the number of lines N, a sequence specifying the current number of tabs at the start of

each line, and a sequence specifying the required number of tabs at the start of each line.

Zvonkec can execute any number of commands consisting of:

● selecting any number of consecutive lines

● adding or deleting a single tab to/from the front of each of the selected lines

The two actions above comprise a single command, regardless of the number of selected lines.

It should be noted that it is forbidden to delete more tabs from a line than are actually present at the

start of a line, as the editor would start deleting characters other than tabs.

You are asked to calculate the minimum number of commands required to tidy up the code.

INPUT

The first line of input contains a positive integer N (N ≤ 1000).

The second line contains a sequence of N integers Pi (0 ≤ Pi ≤ 80), specifying the number of tabs at

the start of i-th line before any editing.

The third line contains a sequence of N integers Ki (0 ≤ Ki ≤ 80), specifying the number of tabs that

Zvonkec would like at the start of i-th line.

OUTPUT

The first and only line of output must contain the required number, as specified in the problem

statement.

SCORING

Test cases worth 70% of total points have N not greater than 100.

SAMPLE TESTS

input

3
3 4 5
6 7 8

output

3

input

4
1 2 3 4
3 1 1 0

output

6

input

4
5 4 5 5
1 5 0 1

output

10

COCI 2010/2011 Task ŽABE
1st round, October 23rd 2010 Author: Stjepan Glavina

The Frog Regent has arranged his N frog servants in a circle, with each frog facing the back of the next

one. Each frog is assigned a unique integer identifier (ID) from the set of 1 to N. The frog arrangement

is specified as a sequence of IDs. The sequence always starts with the frog with the ID 1. It is

followed by the ID of the frog in front of it, then the ID of the next one, and so on until the ID of the

last frog - the one behind the frog with ID 1.

A frog is considered to have made a single leap if it has jumped over the frog in front of it, swapping

places with it in the process. For example, if the frogs are sequenced as “1 5 4 3 2 6” and the frog with

ID 2 makes two leaps, the resulting sequence will be “1 2 5 4 3 6” (the frog has shifted two places

forward). When the Frog Regent proclaims the number B, the frog with ID B makes B leaps.

The Frog Regent wishes, using some number of proclamations, to rearrange the frogs from the starting

sequence to his favourite resulting sequence. Given the starting and resulting frog sequences, write a

program that will compute a sequence of proclamations needed for the Regent to rearrange the frogs

into the resulting sequence. Naturally, the starting and resulting sequences will not be equal.

INPUT

The first line of input contains a positive integer N, the number of frogs (3 ≤ N ≤ 100).

The second line of input contains a permutation of the first N positive integers, the starting frog

sequence.

The third line of input contains another permutation of the first N positive integers, the resulting frog

sequence.

OUTPUT

Output any sequence of integers (one integer per line) that the Frog Regent can proclaim in order to

rearrange the frogs into the resulting sequence.

The number of proclamations must not exceed 100 000.

Note: The test data will ensure that a solution will always exist.

SCORING

Test cases worth 40% of total points have N not greater than 8.

SAMPLE TESTS

input

6
1 5 4 3 2 6
1 2 5 4 3 6

output

2

input

5
1 5 3 2 4
1 5 4 2 3

output

5
3
5
2

