
GCPC 2024 Presentation of Solutions

The GCPC Jury
September 12, 2024

GCPC 2024 Jury

• Sebastian Angrick
Hasso-Plattner-Institute Potsdam

• Niklas Bauer
Georg August University of Göttingen

• Brutenis Gliwa
University of Rostock, CPUlm

• Andreas Grigorjew
University of Helsinki FI

• Yvonne Kothmeier
Friedrich-Alexander University
Erlangen-Nürnberg

• Felicia Lucke
Fribourg University CH, CPUlm

• Jannik Olbrich
Ulm University, CPUlm

• Erik Sünderhauf
Technical University of Munich

• Christopher Weyand
MOIA GmbH, CPUlm

• Paul Wild
Friedrich-Alexander University
Erlangen-Nürnberg, CPUlm

• Wendy Yi
Karlsruhe Institute of Technology,CPUlm

• Michael Zündorf
Karlsruhe Institute of Technology, CPUlm

• Marian Zuska
University of Rostock

GCPC 2024 Test Solvers

• Khaled Ismaeel
freiheit.com technologies GmbH, Hamburg

• Michael Ruderer
Augsburg University, CPUlm

• Jonas Schmidt
Hasso-Plattner-Institute Potsdam

• Marcel Wienöbst
University of Lübeck, CPUlm

GCPC 2024 Technical Team

• Nathan Maier
CPUlm

• Alexander Schmid
CPUlm

• Pascal Weber
University of Vienna, CPUlm

A: Alien Attack 2
Problem author: Yvonne Kothmeier & Andreas Grigorjew

Problem

• Find the size of the largest connected component in an undirected graph representing friendships.

Solution

• Perform a graph search starting from any unvisited node.
• Utilize algorithms like Depth First Search (DFS), Breadth First Search (BFS), or Union-Find with

path compression to traverse the graph.
• Count the number of nodes visited during each traversal to determine the size of the connected

component.
• Repeat the process until all nodes have been visited.
• The size of the largest component found will dictate the size of the smallest necessary ship.
• Pitfalls: Inefficient graph traversal algorithms, e.g. revisiting nodes or Union-Find without path

compression, may lead to time limit problems.
• For Python users: default recursion depth is low. Increase using sys.setrecursionlimit

A: Alien Attack 2
Problem author: Yvonne Kothmeier & Andreas Grigorjew

Problem

• Find the size of the largest connected component in an undirected graph representing friendships.

Solution

• Perform a graph search starting from any unvisited node.
• Utilize algorithms like Depth First Search (DFS), Breadth First Search (BFS), or Union-Find with

path compression to traverse the graph.

• Count the number of nodes visited during each traversal to determine the size of the connected
component.

• Repeat the process until all nodes have been visited.
• The size of the largest component found will dictate the size of the smallest necessary ship.
• Pitfalls: Inefficient graph traversal algorithms, e.g. revisiting nodes or Union-Find without path

compression, may lead to time limit problems.
• For Python users: default recursion depth is low. Increase using sys.setrecursionlimit

A: Alien Attack 2
Problem author: Yvonne Kothmeier & Andreas Grigorjew

Problem

• Find the size of the largest connected component in an undirected graph representing friendships.

Solution

• Perform a graph search starting from any unvisited node.
• Utilize algorithms like Depth First Search (DFS), Breadth First Search (BFS), or Union-Find with

path compression to traverse the graph.
• Count the number of nodes visited during each traversal to determine the size of the connected

component.
• Repeat the process until all nodes have been visited.

• The size of the largest component found will dictate the size of the smallest necessary ship.
• Pitfalls: Inefficient graph traversal algorithms, e.g. revisiting nodes or Union-Find without path

compression, may lead to time limit problems.
• For Python users: default recursion depth is low. Increase using sys.setrecursionlimit

A: Alien Attack 2
Problem author: Yvonne Kothmeier & Andreas Grigorjew

Problem

• Find the size of the largest connected component in an undirected graph representing friendships.

Solution

• Perform a graph search starting from any unvisited node.
• Utilize algorithms like Depth First Search (DFS), Breadth First Search (BFS), or Union-Find with

path compression to traverse the graph.
• Count the number of nodes visited during each traversal to determine the size of the connected

component.
• Repeat the process until all nodes have been visited.
• The size of the largest component found will dictate the size of the smallest necessary ship.

• Pitfalls: Inefficient graph traversal algorithms, e.g. revisiting nodes or Union-Find without path
compression, may lead to time limit problems.

• For Python users: default recursion depth is low. Increase using sys.setrecursionlimit

A: Alien Attack 2
Problem author: Yvonne Kothmeier & Andreas Grigorjew

Problem

• Find the size of the largest connected component in an undirected graph representing friendships.

Solution

• Perform a graph search starting from any unvisited node.
• Utilize algorithms like Depth First Search (DFS), Breadth First Search (BFS), or Union-Find with

path compression to traverse the graph.
• Count the number of nodes visited during each traversal to determine the size of the connected

component.
• Repeat the process until all nodes have been visited.
• The size of the largest component found will dictate the size of the smallest necessary ship.
• Pitfalls: Inefficient graph traversal algorithms, e.g. revisiting nodes or Union-Find without path

compression, may lead to time limit problems.
• For Python users: default recursion depth is low. Increase using sys.setrecursionlimit

B: Bookshelf Bottleneck
Problem author: Jannik Olbrich

Problem
Store books of size l × w × h into a shelf of height H while minimizing the shelf width used.

Solution

• Put the smallest side length in shelf direction and the second smallest upwards
• If this does not fit with the height H, swap the dimensions

• If it still does not fit, the task is impossible
• Otherwise, do this for every book. The sum of the lengths is the solution

B: Bookshelf Bottleneck
Problem author: Jannik Olbrich

Problem
Store books of size l × w × h into a shelf of height H while minimizing the shelf width used.

Solution

• Put the smallest side length in shelf direction and the second smallest upwards

• If this does not fit with the height H, swap the dimensions

• If it still does not fit, the task is impossible
• Otherwise, do this for every book. The sum of the lengths is the solution

B: Bookshelf Bottleneck
Problem author: Jannik Olbrich

Problem
Store books of size l × w × h into a shelf of height H while minimizing the shelf width used.

Solution

• Put the smallest side length in shelf direction and the second smallest upwards
• If this does not fit with the height H, swap the dimensions

• If it still does not fit, the task is impossible
• Otherwise, do this for every book. The sum of the lengths is the solution

B: Bookshelf Bottleneck
Problem author: Jannik Olbrich

Problem
Store books of size l × w × h into a shelf of height H while minimizing the shelf width used.

Solution

• Put the smallest side length in shelf direction and the second smallest upwards
• If this does not fit with the height H, swap the dimensions
• If it still does not fit, the task is impossible

• Otherwise, do this for every book. The sum of the lengths is the solution

B: Bookshelf Bottleneck
Problem author: Jannik Olbrich

Problem
Store books of size l × w × h into a shelf of height H while minimizing the shelf width used.

Solution

• Put the smallest side length in shelf direction and the second smallest upwards
• If this does not fit with the height H, swap the dimensions
• If it still does not fit, the task is impossible
• Otherwise, do this for every book. The sum of the lengths is the solution

C: Copycat Catcher
Problem author: Jannik Olbrich

Problem

• Determine whether pieces of code can be obtained by renaming variables from substrings of a
reference for i in list do print i j

k in list do print k a
print b c

Solution

• Transform the code:
Replace each occurrence of a variable V with

• the distance to the previous occurrence of V , or
• 0 if there is no previous occurrence

for 0 in list do print 5 0
0 in list do print 5 0

print 0 0

• Do this for all suffixes of the reference:
for 0 in list do print 5 0

0 in list do print 5 0
in list do print 0 0

list do print 0 0
do print 0 0

print 0 0

0 0
0

• Sort these transformed suffixes lexicographically, use binary search to find the transformed query
• Time complexity: O(n2 + q · qlen · log n), where qlen ≤ 2 000 is the max. length of a query

C: Copycat Catcher
Problem author: Jannik Olbrich

Problem

• Determine whether pieces of code can be obtained by renaming variables from substrings of a
reference for i in list do print i j

k in list do print k a
print b c

Solution

• Transform the code:
Replace each occurrence of a variable V with

• the distance to the previous occurrence of V , or
• 0 if there is no previous occurrence

for 0 in list do print 5 0
0 in list do print 5 0

print 0 0

• Do this for all suffixes of the reference:
for 0 in list do print 5 0

0 in list do print 5 0
in list do print 0 0

list do print 0 0
do print 0 0

print 0 0

0 0
0

• Sort these transformed suffixes lexicographically, use binary search to find the transformed query
• Time complexity: O(n2 + q · qlen · log n), where qlen ≤ 2 000 is the max. length of a query

C: Copycat Catcher
Problem author: Jannik Olbrich

Problem

• Determine whether pieces of code can be obtained by renaming variables from substrings of a
reference for i in list do print i j

k in list do print k a
print b c

Solution

• Transform the code:
Replace each occurrence of a variable V with

• the distance to the previous occurrence of V , or

• 0 if there is no previous occurrence

for 0 in list do print 5 0
0 in list do print 5 0

print 0 0

• Do this for all suffixes of the reference:
for 0 in list do print 5 0

0 in list do print 5 0
in list do print 0 0

list do print 0 0
do print 0 0

print 0 0

0 0
0

• Sort these transformed suffixes lexicographically, use binary search to find the transformed query
• Time complexity: O(n2 + q · qlen · log n), where qlen ≤ 2 000 is the max. length of a query

C: Copycat Catcher
Problem author: Jannik Olbrich

Problem

• Determine whether pieces of code can be obtained by renaming variables from substrings of a
reference for i in list do print i j

k in list do print k a
print b c

Solution

• Transform the code:
Replace each occurrence of a variable V with

• the distance to the previous occurrence of V , or
• 0 if there is no previous occurrence

for 0 in list do print 5 0
0 in list do print 5 0

print 0 0

• Do this for all suffixes of the reference:
for 0 in list do print 5 0

0 in list do print 5 0
in list do print 0 0

list do print 0 0
do print 0 0

print 0 0

0 0
0

• Sort these transformed suffixes lexicographically, use binary search to find the transformed query
• Time complexity: O(n2 + q · qlen · log n), where qlen ≤ 2 000 is the max. length of a query

C: Copycat Catcher
Problem author: Jannik Olbrich

Problem

• Determine whether pieces of code can be obtained by renaming variables from substrings of a
reference for i in list do print i j

k in list do print k a
print b c

Solution

• Transform the code:
Replace each occurrence of a variable V with

• the distance to the previous occurrence of V , or
• 0 if there is no previous occurrence

for 0 in list do print 5 0
0 in list do print 5 0

print 0 0

• Do this for all suffixes of the reference:
for 0 in list do print 5 0

0 in list do print 5 0
in list do print 0 0

list do print 0 0
do print 0 0

print 0 0

0 0
0

• Sort these transformed suffixes lexicographically, use binary search to find the transformed query
• Time complexity: O(n2 + q · qlen · log n), where qlen ≤ 2 000 is the max. length of a query

C: Copycat Catcher
Problem author: Jannik Olbrich

Problem

• Determine whether pieces of code can be obtained by renaming variables from substrings of a
reference for i in list do print i j

k in list do print k a
print b c

Solution

• Transform the code:
Replace each occurrence of a variable V with

• the distance to the previous occurrence of V , or
• 0 if there is no previous occurrence

for 0 in list do print 5 0
0 in list do print 5 0

print 0 0

• Do this for all suffixes of the reference:
for 0 in list do print 5 0

0 in list do print 5 0
in list do print 0 0

list do print 0 0
do print 0 0

print 0 0

0 0
0

• Sort these transformed suffixes lexicographically, use binary search to find the transformed query
• Time complexity: O(n2 + q · qlen · log n), where qlen ≤ 2 000 is the max. length of a query

C: Copycat Catcher
Problem author: Jannik Olbrich

Problem

• Determine whether pieces of code can be obtained by renaming variables from substrings of a
reference for i in list do print i j

k in list do print k a
print b c

Solution

• Transform the code:
Replace each occurrence of a variable V with

• the distance to the previous occurrence of V , or
• 0 if there is no previous occurrence

for 0 in list do print 5 0
0 in list do print 5 0

print 0 0

• Do this for all suffixes of the reference:
for 0 in list do print 5 0

0 in list do print 5 0
in list do print 0 0

list do print 0 0
do print 0 0

print 0 0

0 0
0

• Sort these transformed suffixes lexicographically, use binary search to find the transformed query

• Time complexity: O(n2 + q · qlen · log n), where qlen ≤ 2 000 is the max. length of a query

C: Copycat Catcher
Problem author: Jannik Olbrich

Problem

• Determine whether pieces of code can be obtained by renaming variables from substrings of a
reference for i in list do print i j

k in list do print k a
print b c

Solution

• Transform the code:
Replace each occurrence of a variable V with

• the distance to the previous occurrence of V , or
• 0 if there is no previous occurrence

for 0 in list do print 5 0
0 in list do print 5 0

print 0 0

• Do this for all suffixes of the reference:
for 0 in list do print 5 0

0 in list do print 5 0
in list do print 0 0

list do print 0 0
do print 0 0

print 0 0

0 0
0

• Sort these transformed suffixes lexicographically, use binary search to find the transformed query
• Time complexity: O(n2 + q · qlen · log n), where qlen ≤ 2 000 is the max. length of a query

D: Dark Alley
Problem author: Michael Zündorf

Problem
Process the following queries:

+ b x: place a lamp with brightness b at position x .
- b x: remove a lamp with brightness b at position x .

? x: calculate the brightness at position x .

Note that the light reduces by a factor of p̃ = 1 − p every metre.

0 0 0 0 0 0

D: Dark Alley
Problem author: Michael Zündorf

Problem
Process the following queries:

+ b x: place a lamp with brightness b at position x .
- b x: remove a lamp with brightness b at position x .

? x: calculate the brightness at position x .

Note that the light reduces by a factor of p̃ = 1 − p every metre.

1

0.25 0.5 1 0.5 0.25 0.125

D: Dark Alley
Problem author: Michael Zündorf

Solution

• Split light into two directions and store it in two data structures.
=⇒ only consider light to the right for now

• A light with brightness b at position x contributes b · p̃y−x at y ≥ x .
• A light with brightness b · p̃x at position 0 has the same contribution at y .
• Do not propagate light.
• Place bulbs at positions x , x + 1, . . . , n with constant brightness b · p̃x .
• The light at position y is now too bright by a constant factor py .
• For queries of type ? x, answer with ℓx · p̃−x .
• Use segment tree or fenwick tree to maintain ℓ in O(q log(n)).

1

0.25 0.5 1 0.5 0.25 0.125

D: Dark Alley
Problem author: Michael Zündorf

Solution

• Split light into two directions and store it in two data structures.
=⇒ only consider light to the right for now

• A light with brightness b at position x contributes b · p̃y−x at y ≥ x .
• A light with brightness b · p̃x at position 0 has the same contribution at y .
• Do not propagate light.
• Place bulbs at positions x , x + 1, . . . , n with constant brightness b · p̃x .
• The light at position y is now too bright by a constant factor py .
• For queries of type ? x, answer with ℓx · p̃−x .
• Use segment tree or fenwick tree to maintain ℓ in O(q log(n)).

1

0 0 1 0.5 0.25 0.125

D: Dark Alley
Problem author: Michael Zündorf

Solution

• Split light into two directions and store it in two data structures.
=⇒ only consider light to the right for now

• A light with brightness b at position x contributes b · p̃y−x at y ≥ x .

• A light with brightness b · p̃x at position 0 has the same contribution at y .
• Do not propagate light.
• Place bulbs at positions x , x + 1, . . . , n with constant brightness b · p̃x .
• The light at position y is now too bright by a constant factor py .
• For queries of type ? x, answer with ℓx · p̃−x .
• Use segment tree or fenwick tree to maintain ℓ in O(q log(n)).

1

0 0 1 0.5 0.25 0.125

D: Dark Alley
Problem author: Michael Zündorf

Solution

• Split light into two directions and store it in two data structures.
=⇒ only consider light to the right for now

• A light with brightness b at position x contributes b · p̃y−x at y ≥ x .
• A light with brightness b · p̃x at position 0 has the same contribution at y .

• Do not propagate light.
• Place bulbs at positions x , x + 1, . . . , n with constant brightness b · p̃x .
• The light at position y is now too bright by a constant factor py .
• For queries of type ? x, answer with ℓx · p̃−x .
• Use segment tree or fenwick tree to maintain ℓ in O(q log(n)).

4

4 2 1 0.5 0.25 0.125

D: Dark Alley
Problem author: Michael Zündorf

Solution

• Split light into two directions and store it in two data structures.
=⇒ only consider light to the right for now

• A light with brightness b at position x contributes b · p̃y−x at y ≥ x .
• A light with brightness b · p̃x at position 0 has the same contribution at y .
• Do not propagate light.
• Place bulbs at positions x , x + 1, . . . , n with constant brightness b · p̃x .

• The light at position y is now too bright by a constant factor py .
• For queries of type ? x, answer with ℓx · p̃−x .
• Use segment tree or fenwick tree to maintain ℓ in O(q log(n)).

4 4 4 4

0 · p̃−0 0 · p̃−1 4 · p̃−2 4 · p̃−3 4 · p̃−4 4 · p̃−5

D: Dark Alley
Problem author: Michael Zündorf

Solution

• Split light into two directions and store it in two data structures.
=⇒ only consider light to the right for now

• A light with brightness b at position x contributes b · p̃y−x at y ≥ x .
• A light with brightness b · p̃x at position 0 has the same contribution at y .
• Do not propagate light.
• Place bulbs at positions x , x + 1, . . . , n with constant brightness b · p̃x .
• The light at position y is now too bright by a constant factor py .
• For queries of type ? x, answer with ℓx · p̃−x .

• Use segment tree or fenwick tree to maintain ℓ in O(q log(n)).

4 4 4 4

0 · p̃−0 0 · p̃−1 4 · p̃−2 4 · p̃−3 4 · p̃−4 4 · p̃−5

D: Dark Alley
Problem author: Michael Zündorf

Solution

• Split light into two directions and store it in two data structures.
=⇒ only consider light to the right for now

• A light with brightness b at position x contributes b · p̃y−x at y ≥ x .
• A light with brightness b · p̃x at position 0 has the same contribution at y .
• Do not propagate light.
• Place bulbs at positions x , x + 1, . . . , n with constant brightness b · p̃x .
• The light at position y is now too bright by a constant factor py .
• For queries of type ? x, answer with ℓx · p̃−x .
• Use segment tree or fenwick tree to maintain ℓ in O(q log(n)).

4 4 4 4

0 · p̃−0 0 · p̃−1 4 · p̃−2 4 · p̃−3 4 · p̃−4 4 · p̃−5

E: Even Odd Game
Problem author: Paul Wild

Problem
Find and interactively execute a winning strategy in the following game:

• There are some cards containing math operations +n and ×n.
• Two players alternate picking cards until no cards are left.
• These operations are applied to a given number in the order they are picked.
• One player wins if the final result is even, the other wins if it is odd.

E: Even Odd Game
Problem author: Paul Wild

Solution

• As we only care about parity, reduce all numbers mod 2.

• So there are only three types of cards: +0, +1, ×0
• Note that +0 is the same as ×1.

• There are at most n ≤ 300 cards, so we can use Θ(n3) dynamic programming:

dp[who][cur][a][b][c] = Does player who win when the current value is cur and there
are a, b and c operations of the respective types remaining?

• The game can be played by following along the values in the DP table.

Challenge
Can you also solve the problem for n ≤ 105?

E: Even Odd Game
Problem author: Paul Wild

Solution

• As we only care about parity, reduce all numbers mod 2.
• So there are only three types of cards: +0, +1, ×0

• Note that +0 is the same as ×1.

• There are at most n ≤ 300 cards, so we can use Θ(n3) dynamic programming:

dp[who][cur][a][b][c] = Does player who win when the current value is cur and there
are a, b and c operations of the respective types remaining?

• The game can be played by following along the values in the DP table.

Challenge
Can you also solve the problem for n ≤ 105?

E: Even Odd Game
Problem author: Paul Wild

Solution

• As we only care about parity, reduce all numbers mod 2.
• So there are only three types of cards: +0, +1, ×0

• Note that +0 is the same as ×1.

• There are at most n ≤ 300 cards, so we can use Θ(n3) dynamic programming:

dp[who][cur][a][b][c] = Does player who win when the current value is cur and there
are a, b and c operations of the respective types remaining?

• The game can be played by following along the values in the DP table.

Challenge
Can you also solve the problem for n ≤ 105?

E: Even Odd Game
Problem author: Paul Wild

Solution

• As we only care about parity, reduce all numbers mod 2.
• So there are only three types of cards: +0, +1, ×0

• Note that +0 is the same as ×1.

• There are at most n ≤ 300 cards, so we can use Θ(n3) dynamic programming:

dp[who][cur][a][b][c] = Does player who win when the current value is cur and there
are a, b and c operations of the respective types remaining?

• The game can be played by following along the values in the DP table.

Challenge
Can you also solve the problem for n ≤ 105?

E: Even Odd Game
Problem author: Paul Wild

Solution

• As we only care about parity, reduce all numbers mod 2.
• So there are only three types of cards: +0, +1, ×0

• Note that +0 is the same as ×1.

• There are at most n ≤ 300 cards, so we can use Θ(n3) dynamic programming:

dp[who][cur][a][b][c] = Does player who win when the current value is cur and there
are a, b and c operations of the respective types remaining?

• The game can be played by following along the values in the DP table.

Challenge
Can you also solve the problem for n ≤ 105?

E: Even Odd Game
Problem author: Paul Wild

Solution

• As we only care about parity, reduce all numbers mod 2.
• So there are only three types of cards: +0, +1, ×0

• Note that +0 is the same as ×1.

• There are at most n ≤ 300 cards, so we can use Θ(n3) dynamic programming:

dp[who][cur][a][b][c] = Does player who win when the current value is cur and there
are a, b and c operations of the respective types remaining?

• The game can be played by following along the values in the DP table.

Challenge
Can you also solve the problem for n ≤ 105?

F: Fair Fruitcake Fragmenting
Problem author: Jannik Olbrich

Problem
Given a point symmetric polygon, check if it can be cut into exactly two pieces of equal size along an
infinite line.

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

x

y

F: Fair Fruitcake Fragmenting
Problem author: Jannik Olbrich

Solution

• Polygon is point symmetric
• Parts must have equal size

=⇒ Line has to go through centre of mass = point of symmetry

=⇒ We can do a sweepline around centre of mass
• Due to symmetry, it is sufficient to keep track of the upper half of the polygon
• Sweepline is valid answer ⇐⇒ sweepline intersects the polygon exactly once

F: Fair Fruitcake Fragmenting
Problem author: Jannik Olbrich

Solution

• Polygon is point symmetric
• Parts must have equal size

=⇒ Line has to go through centre of mass = point of symmetry
=⇒ We can do a sweepline around centre of mass

• Due to symmetry, it is sufficient to keep track of the upper half of the polygon
• Sweepline is valid answer ⇐⇒ sweepline intersects the polygon exactly once

F: Fair Fruitcake Fragmenting
Problem author: Jannik Olbrich

Solution

• Polygon is point symmetric
• Parts must have equal size

=⇒ Line has to go through centre of mass = point of symmetry
=⇒ We can do a sweepline around centre of mass

• Due to symmetry, it is sufficient to keep track of the upper half of the polygon

• Sweepline is valid answer ⇐⇒ sweepline intersects the polygon exactly once

F: Fair Fruitcake Fragmenting
Problem author: Jannik Olbrich

Solution

• Polygon is point symmetric
• Parts must have equal size

=⇒ Line has to go through centre of mass = point of symmetry
=⇒ We can do a sweepline around centre of mass

• Due to symmetry, it is sufficient to keep track of the upper half of the polygon
• Sweepline is valid answer ⇐⇒ sweepline intersects the polygon exactly once

F: Fair Fruitcake Fragmenting
Problem author: Jannik Olbrich

Sweepline

• Number of intersections can only change at corners

• + events come before − events
• If after a type a event the sweepline has size 1, the line is ok
• Type c events are only ok if we can rotate an ε further

(add a dummy event halfway to the next actual event)

a: −2 b: +2 c: −2 d : +2

F: Fair Fruitcake Fragmenting
Problem author: Jannik Olbrich

Sweepline

• Number of intersections can only change at corners
• + events come before − events

• If after a type a event the sweepline has size 1, the line is ok
• Type c events are only ok if we can rotate an ε further

(add a dummy event halfway to the next actual event)

a: −2 b: +2 c: −2 d : +2

F: Fair Fruitcake Fragmenting
Problem author: Jannik Olbrich

Sweepline

• Number of intersections can only change at corners
• + events come before − events
• If after a type a event the sweepline has size 1, the line is ok
• Type c events are only ok if we can rotate an ε further

(add a dummy event halfway to the next actual event)

a: −2 b: +2 c: −2 d : +2

F: Fair Fruitcake Fragmenting
Problem author: Jannik Olbrich

Edgecase
There might be no valid cut line that goes through any corner

F: Fair Fruitcake Fragmenting
Problem author: Jannik Olbrich

Edgecase
There might be no valid cut line that goes through any corner

F: Fair Fruitcake Fragmenting
Problem author: Jannik Olbrich

Edgecase
There might be no valid cut line that goes through any corner

G: Geometric Gridlock
Problem author: Paul Wild

Problem
Construct a valid Pentominous grid of a given size:

• Divide an h × w grid into regions of size 5 (pentominoes). . .
• . . . such that no two adjacent regions have the same shape.

G: Geometric Gridlock
Problem author: Paul Wild

Insights and corner cases

• One of h or w must be a multiple of 5; by symmetry, assume it’s w .

• 1 × w is only solvable for w = 5:

• 2 × 5 is not solvable:

• 2 × w is solvable in all other cases:

G: Geometric Gridlock
Problem author: Paul Wild

Insights and corner cases

• One of h or w must be a multiple of 5; by symmetry, assume it’s w .
• 1 × w is only solvable for w = 5:

• 2 × 5 is not solvable:

• 2 × w is solvable in all other cases:

G: Geometric Gridlock
Problem author: Paul Wild

Insights and corner cases

• One of h or w must be a multiple of 5; by symmetry, assume it’s w .
• 1 × w is only solvable for w = 5:

• 2 × 5 is not solvable:

• 2 × w is solvable in all other cases:

G: Geometric Gridlock
Problem author: Paul Wild

Insights and corner cases

• One of h or w must be a multiple of 5; by symmetry, assume it’s w .
• 1 × w is only solvable for w = 5:

• 2 × 5 is not solvable:

• 2 × w is solvable in all other cases:

G: Geometric Gridlock
Problem author: Paul Wild

Insights and corner cases

• One of h or w must be a multiple of 5; by symmetry, assume it’s w .
• 1 × w is only solvable for w = 5:

• 2 × 5 is not solvable:

• 2 × w is solvable in all other cases:

G: Geometric Gridlock
Problem author: Paul Wild

Insights and corner cases

• One of h or w must be a multiple of 5; by symmetry, assume it’s w .
• 1 × w is only solvable for w = 5:

• 2 × 5 is not solvable:

• 2 × w is solvable in all other cases:

G: Geometric Gridlock
Problem author: Paul Wild

Solution

• For 3 × 5 we can come up with a solution that can be repeated to achieve any width:

• Similar repeatable patterns exist for heights 4, 5, 6 and 7:

G: Geometric Gridlock
Problem author: Paul Wild

Solution

• For 3 × 5 we can come up with a solution that can be repeated to achieve any width:

• Similar repeatable patterns exist for heights 4, 5, 6 and 7:

G: Geometric Gridlock
Problem author: Paul Wild

Solution

• For 3 × 5 we can come up with a solution that can be repeated to achieve any width:

• Similar repeatable patterns exist for heights 4, 5, 6 and 7:

G: Geometric Gridlock
Problem author: Paul Wild

Solution

• For 3 × 5 we can come up with a solution that can be repeated to achieve any width:

• Similar repeatable patterns exist for heights 4, 5, 6 and 7:

G: Geometric Gridlock
Problem author: Paul Wild

Solution (continued)

• With some care, these patterns can be chosen so that they tile along both directions:

• This way, we can reduce any height h to one of the base cases 3, 4, 5, 6 or 7.

G: Geometric Gridlock
Problem author: Paul Wild

Solution (continued)

• With some care, these patterns can be chosen so that they tile along both directions:

• This way, we can reduce any height h to one of the base cases 3, 4, 5, 6 or 7.

G: Geometric Gridlock
Problem author: Paul Wild

Solution (continued)

• With some care, these patterns can be chosen so that they tile along both directions:

• This way, we can reduce any height h to one of the base cases 3, 4, 5, 6 or 7.

G: Geometric Gridlock
Problem author: Paul Wild

Solution (continued)

• With some care, these patterns can be chosen so that they tile along both directions:

• This way, we can reduce any height h to one of the base cases 3, 4, 5, 6 or 7.

G: Geometric Gridlock
Problem author: Paul Wild

Solution (continued)

• With some care, these patterns can be chosen so that they tile along both directions:

• This way, we can reduce any height h to one of the base cases 3, 4, 5, 6 or 7.

G: Geometric Gridlock
Problem author: Paul Wild

Solution (continued)

• With some care, these patterns can be chosen so that they tile along both directions:

• This way, we can reduce any height h to one of the base cases 3, 4, 5, 6 or 7.

H: Headline Heat
Problem author: Christopher Weyand

Problem

• Given n < 105 university names, m < 105 rivalries between universities, and k < 105 texts. For
each text, answer if there are two rivalling universities with different number of occurrences.
The summed length of all names and texts is W < 106.

Solution
First a solution in time O(mW).

• build Aho-Corasick automaton out of all the names
• each state stores m long vector that tracks for each rivalry the difference in occurrence, initially 0
• for rivalry i between u and v , add +1 to the ith entry of the vector of states that accept u and -1

in states that accept v
• to process an article, feed the text into the automaton and add the m long vectors up element wise
• a text is safe if we get a vector with all 0s

To avoid quadratic time, hash the vectors. Runtime: O(n + m + k)

H: Headline Heat
Problem author: Christopher Weyand

Problem

• Given n < 105 university names, m < 105 rivalries between universities, and k < 105 texts. For
each text, answer if there are two rivalling universities with different number of occurrences.
The summed length of all names and texts is W < 106.

Solution
First a solution in time O(mW).

• build Aho-Corasick automaton out of all the names
• each state stores m long vector that tracks for each rivalry the difference in occurrence, initially 0
• for rivalry i between u and v , add +1 to the ith entry of the vector of states that accept u and -1

in states that accept v
• to process an article, feed the text into the automaton and add the m long vectors up element wise
• a text is safe if we get a vector with all 0s

To avoid quadratic time, hash the vectors. Runtime: O(n + m + k)

H: Headline Heat
Problem author: Christopher Weyand

Problem

• Given n < 105 university names, m < 105 rivalries between universities, and k < 105 texts. For
each text, answer if there are two rivalling universities with different number of occurrences.
The summed length of all names and texts is W < 106.

Solution
First a solution in time O(mW).

• build Aho-Corasick automaton out of all the names

• each state stores m long vector that tracks for each rivalry the difference in occurrence, initially 0
• for rivalry i between u and v , add +1 to the ith entry of the vector of states that accept u and -1

in states that accept v
• to process an article, feed the text into the automaton and add the m long vectors up element wise
• a text is safe if we get a vector with all 0s

To avoid quadratic time, hash the vectors. Runtime: O(n + m + k)

H: Headline Heat
Problem author: Christopher Weyand

Problem

• Given n < 105 university names, m < 105 rivalries between universities, and k < 105 texts. For
each text, answer if there are two rivalling universities with different number of occurrences.
The summed length of all names and texts is W < 106.

Solution
First a solution in time O(mW).

• build Aho-Corasick automaton out of all the names
• each state stores m long vector that tracks for each rivalry the difference in occurrence, initially 0

• for rivalry i between u and v , add +1 to the ith entry of the vector of states that accept u and -1
in states that accept v

• to process an article, feed the text into the automaton and add the m long vectors up element wise
• a text is safe if we get a vector with all 0s

To avoid quadratic time, hash the vectors. Runtime: O(n + m + k)

H: Headline Heat
Problem author: Christopher Weyand

Problem

• Given n < 105 university names, m < 105 rivalries between universities, and k < 105 texts. For
each text, answer if there are two rivalling universities with different number of occurrences.
The summed length of all names and texts is W < 106.

Solution
First a solution in time O(mW).

• build Aho-Corasick automaton out of all the names
• each state stores m long vector that tracks for each rivalry the difference in occurrence, initially 0
• for rivalry i between u and v , add +1 to the ith entry of the vector of states that accept u and -1

in states that accept v

• to process an article, feed the text into the automaton and add the m long vectors up element wise
• a text is safe if we get a vector with all 0s

To avoid quadratic time, hash the vectors. Runtime: O(n + m + k)

H: Headline Heat
Problem author: Christopher Weyand

Problem

• Given n < 105 university names, m < 105 rivalries between universities, and k < 105 texts. For
each text, answer if there are two rivalling universities with different number of occurrences.
The summed length of all names and texts is W < 106.

Solution
First a solution in time O(mW).

• build Aho-Corasick automaton out of all the names
• each state stores m long vector that tracks for each rivalry the difference in occurrence, initially 0
• for rivalry i between u and v , add +1 to the ith entry of the vector of states that accept u and -1

in states that accept v
• to process an article, feed the text into the automaton and add the m long vectors up element wise

• a text is safe if we get a vector with all 0s

To avoid quadratic time, hash the vectors. Runtime: O(n + m + k)

H: Headline Heat
Problem author: Christopher Weyand

Problem

• Given n < 105 university names, m < 105 rivalries between universities, and k < 105 texts. For
each text, answer if there are two rivalling universities with different number of occurrences.
The summed length of all names and texts is W < 106.

Solution
First a solution in time O(mW).

• build Aho-Corasick automaton out of all the names
• each state stores m long vector that tracks for each rivalry the difference in occurrence, initially 0
• for rivalry i between u and v , add +1 to the ith entry of the vector of states that accept u and -1

in states that accept v
• to process an article, feed the text into the automaton and add the m long vectors up element wise
• a text is safe if we get a vector with all 0s

To avoid quadratic time, hash the vectors. Runtime: O(n + m + k)

H: Headline Heat
Problem author: Christopher Weyand

Problem

• Given n < 105 university names, m < 105 rivalries between universities, and k < 105 texts. For
each text, answer if there are two rivalling universities with different number of occurrences.
The summed length of all names and texts is W < 106.

Solution
First a solution in time O(mW).

• build Aho-Corasick automaton out of all the names
• each state stores m long vector that tracks for each rivalry the difference in occurrence, initially 0
• for rivalry i between u and v , add +1 to the ith entry of the vector of states that accept u and -1

in states that accept v
• to process an article, feed the text into the automaton and add the m long vectors up element wise
• a text is safe if we get a vector with all 0s

To avoid quadratic time, hash the vectors. Runtime: O(n + m + k)

I: Interference
Problem author: Sebastian Angrick

Problem

• Given some alternating range updates, answer point queries

Solution

• Range is too large to work with, ignore it
• O(n2) is sufficient, for each query simulate all former updates.
• Pitfalls: Results can be large (long long may be needed) or negative, correctly deal with alternation

I: Interference
Problem author: Sebastian Angrick

Problem

• Given some alternating range updates, answer point queries

Solution

• Range is too large to work with, ignore it

• O(n2) is sufficient, for each query simulate all former updates.
• Pitfalls: Results can be large (long long may be needed) or negative, correctly deal with alternation

I: Interference
Problem author: Sebastian Angrick

Problem

• Given some alternating range updates, answer point queries

Solution

• Range is too large to work with, ignore it
• O(n2) is sufficient, for each query simulate all former updates.

• Pitfalls: Results can be large (long long may be needed) or negative, correctly deal with alternation

I: Interference
Problem author: Sebastian Angrick

Problem

• Given some alternating range updates, answer point queries

Solution

• Range is too large to work with, ignore it
• O(n2) is sufficient, for each query simulate all former updates.
• Pitfalls: Results can be large (long long may be needed) or negative, correctly deal with alternation

J: Jigsaw Present
Problem author: Erik Sünderhauf

Problem

• Given n ≤ 4 096 pairs of numbers (xi , yi), with 1 ≤ xi ≤ 4 096 =: C and |yi | ≤ C . Find two
distinct subsets with the same sum or report that this is not possible.

Solution

• The coordinates are too large to run a dp solution, so we should look for a brute force approach.
• We could solve this in O(3n) by deciding for each element whether it should go in the 1st subset,

the 2nd subset, or none of the subsets.
• Optimize with meet-in-the-middle to O(3n/2) by computing all possible sums of the form

n/2∑
i=1

si · (xi , yi),
n∑

i=n/2+1

si · (xi , yi), si ∈ {−1, 0, 1}

and finding a collision.
• But n is waaay too large for this approach...

J: Jigsaw Present
Problem author: Erik Sünderhauf

Problem

• Given n ≤ 4 096 pairs of numbers (xi , yi), with 1 ≤ xi ≤ 4 096 =: C and |yi | ≤ C . Find two
distinct subsets with the same sum or report that this is not possible.

Solution

• The coordinates are too large to run a dp solution, so we should look for a brute force approach.

• We could solve this in O(3n) by deciding for each element whether it should go in the 1st subset,
the 2nd subset, or none of the subsets.

• Optimize with meet-in-the-middle to O(3n/2) by computing all possible sums of the form

n/2∑
i=1

si · (xi , yi),
n∑

i=n/2+1

si · (xi , yi), si ∈ {−1, 0, 1}

and finding a collision.
• But n is waaay too large for this approach...

J: Jigsaw Present
Problem author: Erik Sünderhauf

Problem

• Given n ≤ 4 096 pairs of numbers (xi , yi), with 1 ≤ xi ≤ 4 096 =: C and |yi | ≤ C . Find two
distinct subsets with the same sum or report that this is not possible.

Solution

• The coordinates are too large to run a dp solution, so we should look for a brute force approach.
• We could solve this in O(3n) by deciding for each element whether it should go in the 1st subset,

the 2nd subset, or none of the subsets.

• Optimize with meet-in-the-middle to O(3n/2) by computing all possible sums of the form

n/2∑
i=1

si · (xi , yi),
n∑

i=n/2+1

si · (xi , yi), si ∈ {−1, 0, 1}

and finding a collision.
• But n is waaay too large for this approach...

J: Jigsaw Present
Problem author: Erik Sünderhauf

Problem

• Given n ≤ 4 096 pairs of numbers (xi , yi), with 1 ≤ xi ≤ 4 096 =: C and |yi | ≤ C . Find two
distinct subsets with the same sum or report that this is not possible.

Solution

• The coordinates are too large to run a dp solution, so we should look for a brute force approach.
• We could solve this in O(3n) by deciding for each element whether it should go in the 1st subset,

the 2nd subset, or none of the subsets.
• Optimize with meet-in-the-middle to O(3n/2) by computing all possible sums of the form

n/2∑
i=1

si · (xi , yi),
n∑

i=n/2+1

si · (xi , yi), si ∈ {−1, 0, 1}

and finding a collision.

• But n is waaay too large for this approach...

J: Jigsaw Present
Problem author: Erik Sünderhauf

Problem

• Given n ≤ 4 096 pairs of numbers (xi , yi), with 1 ≤ xi ≤ 4 096 =: C and |yi | ≤ C . Find two
distinct subsets with the same sum or report that this is not possible.

Solution

• The coordinates are too large to run a dp solution, so we should look for a brute force approach.
• We could solve this in O(3n) by deciding for each element whether it should go in the 1st subset,

the 2nd subset, or none of the subsets.
• Optimize with meet-in-the-middle to O(3n/2) by computing all possible sums of the form

n/2∑
i=1

si · (xi , yi),
n∑

i=n/2+1

si · (xi , yi), si ∈ {−1, 0, 1}

and finding a collision.
• But n is waaay too large for this approach...

J: Jigsaw Present
Problem author: Erik Sünderhauf

Insights

• We can have up to 2n possible subset sums, which is exponential in n.

• However, the absolute value of the coordinates in any subset sum are always ≤ n · C , which is
polynomial in n!

Solution

• If n is large enough we can always find two distinct subsets with the same sum. Just do n =
min(n, N) at the beginning of your code. (N ∼ 28 − 32)

• One can prove that for n ≥ 32 there always is a collision (short sketch on next slide).
• Challenge: Construct test cases without collision and with a large n. The best case we could

achieve has n = 27. Hint: powers of 2 are not useful.

J: Jigsaw Present
Problem author: Erik Sünderhauf

Insights

• We can have up to 2n possible subset sums, which is exponential in n.
• However, the absolute value of the coordinates in any subset sum are always ≤ n · C , which is

polynomial in n!

Solution

• If n is large enough we can always find two distinct subsets with the same sum. Just do n =
min(n, N) at the beginning of your code. (N ∼ 28 − 32)

• One can prove that for n ≥ 32 there always is a collision (short sketch on next slide).
• Challenge: Construct test cases without collision and with a large n. The best case we could

achieve has n = 27. Hint: powers of 2 are not useful.

J: Jigsaw Present
Problem author: Erik Sünderhauf

Insights

• We can have up to 2n possible subset sums, which is exponential in n.
• However, the absolute value of the coordinates in any subset sum are always ≤ n · C , which is

polynomial in n!

Solution

• If n is large enough we can always find two distinct subsets with the same sum. Just do n =
min(n, N) at the beginning of your code. (N ∼ 28 − 32)

• One can prove that for n ≥ 32 there always is a collision (short sketch on next slide).
• Challenge: Construct test cases without collision and with a large n. The best case we could

achieve has n = 27. Hint: powers of 2 are not useful.

J: Jigsaw Present
Problem author: Erik Sünderhauf

Insights

• We can have up to 2n possible subset sums, which is exponential in n.
• However, the absolute value of the coordinates in any subset sum are always ≤ n · C , which is

polynomial in n!

Solution

• If n is large enough we can always find two distinct subsets with the same sum. Just do n =
min(n, N) at the beginning of your code. (N ∼ 28 − 32)

• One can prove that for n ≥ 32 there always is a collision (short sketch on next slide).

• Challenge: Construct test cases without collision and with a large n. The best case we could
achieve has n = 27. Hint: powers of 2 are not useful.

J: Jigsaw Present
Problem author: Erik Sünderhauf

Insights

• We can have up to 2n possible subset sums, which is exponential in n.
• However, the absolute value of the coordinates in any subset sum are always ≤ n · C , which is

polynomial in n!

Solution

• If n is large enough we can always find two distinct subsets with the same sum. Just do n =
min(n, N) at the beginning of your code. (N ∼ 28 − 32)

• One can prove that for n ≥ 32 there always is a collision (short sketch on next slide).
• Challenge: Construct test cases without collision and with a large n. The best case we could

achieve has n = 27. Hint: powers of 2 are not useful.

J: Jigsaw Present
Problem author: Erik Sünderhauf

Proof sketch
Let (X , Y) be the total sum of all pairs. Pick a random subset with sum (x̃ , ỹ). Using Chebyshev’s
inequality you can show that the probability that we are “close”’ to the total sum∣∣∣(x̃ , ỹ) − 1

2(X , Y)
∣∣∣ ≲ √

nC

happens with probability ≥ 1/2. Note that there are O(nC2) possible sums that are “close”. If all
subset sums that are “close” to the total sum are distinct, then this requires

nC2 · 2−n ≳
1
2 ⇒ C ≳ 2n/2

√
n

.

Inserting numbers and more details1 shows that we always have a collision for n ≥ 32.

1search for “Probabilistic method”

K: Kitten of Chaos
Problem author: Paul Wild

Problem
Apply a bunch of rotations and reflections to a string consisting of bdpq:

• h: horizontal flip: bbq ↔ pdd

• v: vertical flip: bbq ↔ ppd

• r: 180 degree rotation: bbq ↔ bqq

Solution

• Applying all the transformations one by one takes Θ(n2) time, too slow!
• Instead, we make some observations:

• we may replace each r by hv
• doing vh is the same as hv ⇝ move all h to the front
• we only need to know if the number of h is even or odd (same for v)

• Using these, we only need to do at most one h and at most one v transformation.
• All of this can be done in O(n) time.

K: Kitten of Chaos
Problem author: Paul Wild

Problem
Apply a bunch of rotations and reflections to a string consisting of bdpq:

• h: horizontal flip: bbq ↔ pdd

• v: vertical flip: bbq ↔ ppd

• r: 180 degree rotation: bbq ↔ bqq

Solution

• Applying all the transformations one by one takes Θ(n2) time, too slow!

• Instead, we make some observations:
• we may replace each r by hv
• doing vh is the same as hv ⇝ move all h to the front
• we only need to know if the number of h is even or odd (same for v)

• Using these, we only need to do at most one h and at most one v transformation.
• All of this can be done in O(n) time.

K: Kitten of Chaos
Problem author: Paul Wild

Problem
Apply a bunch of rotations and reflections to a string consisting of bdpq:

• h: horizontal flip: bbq ↔ pdd

• v: vertical flip: bbq ↔ ppd

• r: 180 degree rotation: bbq ↔ bqq

Solution

• Applying all the transformations one by one takes Θ(n2) time, too slow!
• Instead, we make some observations:

• we may replace each r by hv
• doing vh is the same as hv ⇝ move all h to the front
• we only need to know if the number of h is even or odd (same for v)

• Using these, we only need to do at most one h and at most one v transformation.
• All of this can be done in O(n) time.

K: Kitten of Chaos
Problem author: Paul Wild

Problem
Apply a bunch of rotations and reflections to a string consisting of bdpq:

• h: horizontal flip: bbq ↔ pdd

• v: vertical flip: bbq ↔ ppd

• r: 180 degree rotation: bbq ↔ bqq

Solution

• Applying all the transformations one by one takes Θ(n2) time, too slow!
• Instead, we make some observations:

• we may replace each r by hv
• doing vh is the same as hv ⇝ move all h to the front
• we only need to know if the number of h is even or odd (same for v)

• Using these, we only need to do at most one h and at most one v transformation.

• All of this can be done in O(n) time.

K: Kitten of Chaos
Problem author: Paul Wild

Problem
Apply a bunch of rotations and reflections to a string consisting of bdpq:

• h: horizontal flip: bbq ↔ pdd

• v: vertical flip: bbq ↔ ppd

• r: 180 degree rotation: bbq ↔ bqq

Solution

• Applying all the transformations one by one takes Θ(n2) time, too slow!
• Instead, we make some observations:

• we may replace each r by hv
• doing vh is the same as hv ⇝ move all h to the front
• we only need to know if the number of h is even or odd (same for v)

• Using these, we only need to do at most one h and at most one v transformation.
• All of this can be done in O(n) time.

L: Laundry
Problem author: Wendy Yi

Problem
Given the capacity 1 ≤ k ≤ 109 of a washing machine with three programmes, and how many items
can be washed with which programmes.
What is the minimum number of loads needed to wash all items?

Insights

• Items with no choice and items with all choices
are easy.

• If we assign all items of one set with two
choices, an optimal solution for the rest can be
determined greedily.

• There is an optimal solution where there is one
set of items with two choices that is assigned
to the same programme.

C

AB

BCAC

ABC

A B k = 10

14 3 6

6

5

5 1

L: Laundry
Problem author: Wendy Yi

Problem
Given the capacity 1 ≤ k ≤ 109 of a washing machine with three programmes, and how many items
can be washed with which programmes.
What is the minimum number of loads needed to wash all items?

Insights

• Items with no choice and items with all choices
are easy.

• If we assign all items of one set with two
choices, an optimal solution for the rest can be
determined greedily.

• There is an optimal solution where there is one
set of items with two choices that is assigned
to the same programme.

C

AB

BCAC

ABC

??

?

? ?

?

A B k = 10

14 3 6

6

5

5 1

A : 14

B : 6

C : 5

L: Laundry
Problem author: Wendy Yi

Problem
Given the capacity 1 ≤ k ≤ 109 of a washing machine with three programmes, and how many items
can be washed with which programmes.
What is the minimum number of loads needed to wash all items?

Insights

• Items with no choice and items with all choices
are easy.

• If we assign all items of one set with two
choices, an optimal solution for the rest can be
determined greedily.

• There is an optimal solution where there is one
set of items with two choices that is assigned
to the same programme.

C

AB

BCAC

ABC

A B k = 10

14 3 6

6

5

5 1

2 1

C : 5

A : 16

B : 7

L: Laundry
Problem author: Wendy Yi

Problem
Given the capacity 1 ≤ k ≤ 109 of a washing machine with three programmes, and how many items
can be washed with which programmes.
What is the minimum number of loads needed to wash all items?

Insights

• Items with no choice and items with all choices
are easy.

• If we assign all items of one set with two
choices, an optimal solution for the rest can be
determined greedily.

• There is an optimal solution where there is one
set of items with two choices that is assigned
to the same programme.

C

AB

BCAC

ABC

A B k = 10

14 3 6

6

5

5 1

2 1

4

1

3

3

A : 20

B : 10

C : 10

L: Laundry
Problem author: Wendy Yi

Problem
Given the capacity 1 ≤ k ≤ 109 of a washing machine with three programmes, and how many items
can be washed with which programmes.
What is the minimum number of loads needed to wash all items?

Insights

• Items with no choice and items with all choices
are easy.

• If we assign all items of one set with two
choices, an optimal solution for the rest can be
determined greedily.

• There is an optimal solution where there is one
set of items with two choices that is assigned
to the same programme. C

AB

BCAC

ABC

A B k = 10

14 3 6

6

5

5 1

2 1

4

1

3

3

A : 20

B : 10

C : 10

1

1 1

L: Laundry
Problem author: Wendy Yi

Problem
Given the capacity 1 ≤ k ≤ 109 of a washing machine with three programmes, and how many items
can be washed with which programmes.
What is the minimum number of loads needed to wash all items?

Insights

• Items with no choice and items with all choices
are easy.

• If we assign all items of one set with two
choices, an optimal solution for the rest can be
determined greedily.

• There is an optimal solution where there is one
set of items with two choices that is assigned
to the same programme. C

AB

BCAC

ABC

A B k = 10

14 3 6

6

5

5 1

A : 20

B : 10

C : 10

3

3

2

4

2

L: Laundry
Problem author: Wendy Yi

Problem
Given the capacity 1 ≤ k ≤ 109 of a washing machine with three programmes, and how many items
can be washed with which programmes.
What is the minimum number of loads needed to wash all items?

Solution

• Process items that can only be washed with one programme first.

• For each set with two choices:

• Try to assign the whole set to one of the two choices.
• Determine the optimal solution for the other sets with two choices.
• Distribute the items with three choices optimally.

• Take the minimum over all such assignments (6 in total).

Running time: O(1) per test case

L: Laundry
Problem author: Wendy Yi

Problem
Given the capacity 1 ≤ k ≤ 109 of a washing machine with three programmes, and how many items
can be washed with which programmes.
What is the minimum number of loads needed to wash all items?

Solution

• Process items that can only be washed with one programme first.
• For each set with two choices:

• Try to assign the whole set to one of the two choices.
• Determine the optimal solution for the other sets with two choices.
• Distribute the items with three choices optimally.

• Take the minimum over all such assignments (6 in total).

Running time: O(1) per test case

L: Laundry
Problem author: Wendy Yi

Problem
Given the capacity 1 ≤ k ≤ 109 of a washing machine with three programmes, and how many items
can be washed with which programmes.
What is the minimum number of loads needed to wash all items?

Solution

• Process items that can only be washed with one programme first.
• For each set with two choices:

• Try to assign the whole set to one of the two choices.

• Determine the optimal solution for the other sets with two choices.
• Distribute the items with three choices optimally.

• Take the minimum over all such assignments (6 in total).

Running time: O(1) per test case

L: Laundry
Problem author: Wendy Yi

Problem
Given the capacity 1 ≤ k ≤ 109 of a washing machine with three programmes, and how many items
can be washed with which programmes.
What is the minimum number of loads needed to wash all items?

Solution

• Process items that can only be washed with one programme first.
• For each set with two choices:

• Try to assign the whole set to one of the two choices.
• Determine the optimal solution for the other sets with two choices.

• Distribute the items with three choices optimally.

• Take the minimum over all such assignments (6 in total).

Running time: O(1) per test case

L: Laundry
Problem author: Wendy Yi

Problem
Given the capacity 1 ≤ k ≤ 109 of a washing machine with three programmes, and how many items
can be washed with which programmes.
What is the minimum number of loads needed to wash all items?

Solution

• Process items that can only be washed with one programme first.
• For each set with two choices:

• Try to assign the whole set to one of the two choices.
• Determine the optimal solution for the other sets with two choices.
• Distribute the items with three choices optimally.

• Take the minimum over all such assignments (6 in total).

Running time: O(1) per test case

L: Laundry
Problem author: Wendy Yi

Problem
Given the capacity 1 ≤ k ≤ 109 of a washing machine with three programmes, and how many items
can be washed with which programmes.
What is the minimum number of loads needed to wash all items?

Solution

• Process items that can only be washed with one programme first.
• For each set with two choices:

• Try to assign the whole set to one of the two choices.
• Determine the optimal solution for the other sets with two choices.
• Distribute the items with three choices optimally.

• Take the minimum over all such assignments (6 in total).

Running time: O(1) per test case

L: Laundry
Problem author: Wendy Yi

Problem
Given the capacity 1 ≤ k ≤ 109 of a washing machine with three programmes, and how many items
can be washed with which programmes.
What is the minimum number of loads needed to wash all items?

Solution

• Process items that can only be washed with one programme first.
• For each set with two choices:

• Try to assign the whole set to one of the two choices.
• Determine the optimal solution for the other sets with two choices.
• Distribute the items with three choices optimally.

• Take the minimum over all such assignments (6 in total).

Running time: O(1) per test case

L: Laundry
Problem author: Wendy Yi

Problem
Given the capacity 1 ≤ k ≤ 109 of a washing machine with three programmes, and how many items
can be washed with which programmes.
What is the minimum number of loads needed to wash all items?

Solution

• Process items that can only be washed with one programme first.
• For each set with two choices:

• Try to assign the whole set to one of the two choices.
• Determine the optimal solution for the other sets with two choices.
• Distribute the items with three choices optimally.

• Take the minimum over all such assignments (6 in total).

Running time: O(1) per test case

M: Musical Mending
Problem author: Brutenis Gliwa, Marian Zuska

Problem

• Problem: Find the minimal distance from the input sequence to any sequence
x , x + 1, x + 2,. . . , x + n − 1.

Solution

• For a fixed x , the distance can be determined in O(n).
• Naive solution: Compute the distance for all possible x ∈ [−250 000, 200 000]. O(v · n) is too slow!
• Binary searching x does not work, as the score is not a monotonic function.
• Ternary search the answer over all possible x! O(log(v) · n)

M: Musical Mending
Problem author: Brutenis Gliwa, Marian Zuska

Problem

• Problem: Find the minimal distance from the input sequence to any sequence
x , x + 1, x + 2,. . . , x + n − 1.

Solution

• For a fixed x , the distance can be determined in O(n).

• Naive solution: Compute the distance for all possible x ∈ [−250 000, 200 000]. O(v · n) is too slow!
• Binary searching x does not work, as the score is not a monotonic function.
• Ternary search the answer over all possible x! O(log(v) · n)

M: Musical Mending
Problem author: Brutenis Gliwa, Marian Zuska

Problem

• Problem: Find the minimal distance from the input sequence to any sequence
x , x + 1, x + 2,. . . , x + n − 1.

Solution

• For a fixed x , the distance can be determined in O(n).
• Naive solution: Compute the distance for all possible x ∈ [−250 000, 200 000]. O(v · n) is too slow!

• Binary searching x does not work, as the score is not a monotonic function.
• Ternary search the answer over all possible x! O(log(v) · n)

M: Musical Mending
Problem author: Brutenis Gliwa, Marian Zuska

Problem

• Problem: Find the minimal distance from the input sequence to any sequence
x , x + 1, x + 2,. . . , x + n − 1.

Solution

• For a fixed x , the distance can be determined in O(n).
• Naive solution: Compute the distance for all possible x ∈ [−250 000, 200 000]. O(v · n) is too slow!
• Binary searching x does not work, as the score is not a monotonic function.

• Ternary search the answer over all possible x! O(log(v) · n)

M: Musical Mending
Problem author: Brutenis Gliwa, Marian Zuska

Problem

• Problem: Find the minimal distance from the input sequence to any sequence
x , x + 1, x + 2,. . . , x + n − 1.

Solution

• For a fixed x , the distance can be determined in O(n).
• Naive solution: Compute the distance for all possible x ∈ [−250 000, 200 000]. O(v · n) is too slow!
• Binary searching x does not work, as the score is not a monotonic function.
• Ternary search the answer over all possible x! O(log(v) · n)

Random facts

Jury work

• 583 secret test cases (≈ 45 per problem)

• 149 jury solutions
• The minimum number of lines the jury needed to solve all problems is

8 + 3 + 21 + 43 + 32 + 53 + 23 + 46 + 16 + 38 + 6 + 18 + 6 = 313

On average 24.1 lines per problem
• The minimum number of characters the jury needed to solve all problems is

231 + 196 + 495 + 828 + 674 + 1109 + 818 + 1407 + 393 + 952 + 254 + 615 + 231

On average 631 characters per problem

Random facts

Jury work

• 583 secret test cases (≈ 45 per problem)
• 149 jury solutions

• The minimum number of lines the jury needed to solve all problems is

8 + 3 + 21 + 43 + 32 + 53 + 23 + 46 + 16 + 38 + 6 + 18 + 6 = 313

On average 24.1 lines per problem
• The minimum number of characters the jury needed to solve all problems is

231 + 196 + 495 + 828 + 674 + 1109 + 818 + 1407 + 393 + 952 + 254 + 615 + 231

On average 631 characters per problem

Random facts

Jury work

• 583 secret test cases (≈ 45 per problem)
• 149 jury solutions
• The minimum number of lines the jury needed to solve all problems is

8 + 3 + 21 + 43 + 32 + 53 + 23 + 46 + 16 + 38 + 6 + 18 + 6 = 313

On average 24.1 lines per problem

• The minimum number of characters the jury needed to solve all problems is

231 + 196 + 495 + 828 + 674 + 1109 + 818 + 1407 + 393 + 952 + 254 + 615 + 231

On average 631 characters per problem

Random facts

Jury work

• 583 secret test cases (≈ 45 per problem)
• 149 jury solutions
• The minimum number of lines the jury needed to solve all problems is

8 + 3 + 21 + 43 + 32 + 53 + 23 + 46 + 16 + 38 + 6 + 18 + 6 = 313

On average 24.1 lines per problem
• The minimum number of characters the jury needed to solve all problems is

231 + 196 + 495 + 828 + 674 + 1109 + 818 + 1407 + 393 + 952 + 254 + 615 + 231

On average 631 characters per problem

