GCPC 2024 Presentation of Solutions

The GCPC Jury
September 12, 2024

GCPC 2024 Jury

= Sebastian Angrick
Hasso-Plattner-Institute Potsdam
= Niklas Bauer
Georg August University of Gottingen
= Brutenis Gliwa
University of Rostock, CPUIm
= Andreas Grigorjew
University of Helsinki FI
= Yvonne Kothmeier
Friedrich-Alexander University
Erlangen-Niirnberg
= Felicia Lucke
Fribourg University CH, CPUIm
= Jannik Olbrich
Ulm University, CPUIm

Erik Siinderhauf

Technical University of Munich
Christopher Weyand

MOIA GmbH, CPUIm

Paul Wild

Friedrich-Alexander University
Erlangen-Niirnberg, CPUIm

Wendy Yi

Karlsruhe Institute of Technology, CPUIm
Michael Ziindorf

Karlsruhe Institute of Technology, CPUIm
Marian Zuska

University of Rostock

GCPC 2024 Test Solvers
= Khaled Ismaeel
freiheit.com technologies GmbH, Hamburg
= Michael Ruderer
Augsburg University, CPUIm
= Jonas Schmidt
Hasso-Plattner-Institute Potsdam

= Marcel Wiendbst
University of Liibeck, CPUIm

GCPC 2024 Technical Team

= Nathan Maier
CPUIm

= Alexander Schmid
CPUIm

= Pascal Weber
University of Vienna, CPUIm

A: Alien Attack 2

Problem author: Yvonne Kothmeier & Andreas Grigorjew

Problem

= Find the size of the largest connected component in an undirected graph representing friendships.

A: Alien Attack 2

Problem author: Yvonne Kothmeier & Andreas Grigorjew

Problem

= Find the size of the largest connected component in an undirected graph representing friendships.

Solution

= Perform a graph search starting from any unvisited node.

= Utilize algorithms like Depth First Search (DFS), Breadth First Search (BFS), or Union-Find with
path compression to traverse the graph.

A: Alien Attack 2

Problem author: Yvonne Kothmeier & Andreas Grigorjew

Problem

= Find the size of the largest connected component in an undirected graph representing friendships.

Solution
= Perform a graph search starting from any unvisited node.
= Utilize algorithms like Depth First Search (DFS), Breadth First Search (BFS), or Union-Find with
path compression to traverse the graph.
= Count the number of nodes visited during each traversal to determine the size of the connected
component.

= Repeat the process until all nodes have been visited.

A: Alien Attack 2

Problem author: Yvonne Kothmeier & Andreas Grigorjew

Problem

Find the size of the largest connected component in an undirected graph representing friendships.

Solution

Perform a graph search starting from any unvisited node.

Utilize algorithms like Depth First Search (DFS), Breadth First Search (BFS), or Union-Find with
path compression to traverse the graph.

Count the number of nodes visited during each traversal to determine the size of the connected
component.

Repeat the process until all nodes have been visited.

The size of the largest component found will dictate the size of the smallest necessary ship.

A: Alien Attack 2

Problem author: Yvonne Kothmeier & Andreas Grigorjew

Problem

Find the size of the largest connected component in an undirected graph representing friendships.

Solution

Perform a graph search starting from any unvisited node.

Utilize algorithms like Depth First Search (DFS), Breadth First Search (BFS), or Union-Find with
path compression to traverse the graph.

Count the number of nodes visited during each traversal to determine the size of the connected
component.

Repeat the process until all nodes have been visited.
The size of the largest component found will dictate the size of the smallest necessary ship.

Pitfalls: Inefficient graph traversal algorithms, e.g. revisiting nodes or Union-Find without path
compression, may lead to time limit problems.

For Python users: default recursion depth is low. Increase using sys.setrecursionlimit

B: Bookshelf Bottleneck

Problem author: Jannik Olbrich

Problem

Store books of size / X w X h into a shelf of height H while minimizing the shelf width used.

B: Bookshelf Bottleneck

Problem author: Jannik Olbrich

Problem

Store books of size / X w X h into a shelf of height H while minimizing the shelf width used.

Solution

= Put the smallest side length in shelf direction and the second smallest upwards

B: Bookshelf Bottleneck

Problem author: Jannik Olbrich

Problem

Store books of size / X w X h into a shelf of height H while minimizing the shelf width used.

Solution
= Put the smallest side length in shelf direction and the second smallest upwards

= |f this does not fit with the height H, swap the dimensions

B: Bookshelf Bottleneck

Problem author: Jannik Olbrich

Problem

Store books of size / X w X h into a shelf of height H while minimizing the shelf width used.

Solution
= Put the smallest side length in shelf direction and the second smallest upwards
= |f this does not fit with the height H, swap the dimensions

= |f it still does not fit, the task is impossible

B: Bookshelf Bottleneck

Problem author: Jannik Olbrich

Problem

Store books of size / X w X h into a shelf of height H while minimizing the shelf width used.

Solution
= Put the smallest side length in shelf direction and the second smallest upwards
= |f this does not fit with the height H, swap the dimensions
= |f it still does not fit, the task is impossible

= Otherwise, do this for every book. The sum of the lengths is the solution

C: Copycat Catcher

Problem author: Jannik Olbrich

Problem

= Determine whether pieces of code can be obtained by renaming variables from substrings of a
reference for i in list do print i j
k in list do print k a
print b c

C: Copycat Catcher

Problem author: Jannik Olbrich

Problem

= Determine whether pieces of code can be obtained by renaming variables from substrings of a

reference for i in list do print i j
k in list do print k a
print b c
Solution

= Transform the code:
Replace each occurrence of a variable V' with

C: Copycat Catcher

Problem author: Jannik Olbrich

Problem

= Determine whether pieces of code can be obtained by renaming variables from substrings of a

reference for i in list do print i j
k in list do print k a
print b c
Solution

= Transform the code:
Replace each occurrence of a variable V' with

= the distance to the previous occurrence of V/, or

C: Copycat Catcher

Problem author: Jannik Olbrich

Problem

= Determine whether pieces of code can be obtained by renaming variables from substrings of a

reference for i in list do print i j
k in list do print k a
print b c
Solution

= Transform the code:
Replace each occurrence of a variable V' with

= the distance to the previous occurrence of V/, or

= 0 if there is no previous occurrence

C: Copycat Catcher

Problem author: Jannik Olbrich

Problem

= Determine whether pieces of code can be obtained by renaming variables from substrings of a

reference for i in list do print i j
k in list do print k a
print b c
Solution

= Transform the code:
Replace each occurrence of a variable V' with

= the distance to the previous occurrence of V/, or

= 0 if there is no previous occurrence

C: Copycat Catcher

Problem author: Jannik Olbrich

Problem

= Determine whether pieces of code can be obtained by renaming variables from substrings of a

reference

for i in list do print i j

k in list do print k a

Solution
= Transform the code:
Replace each occurrence of a variable V' with
= the distance to the previous occurrence of V/, or
= 0 if there is no previous occurrence
= Do this for all suffixes of the reference:

for O in list do print 5 O
0 in list do print 5 O
in list do print 0 O

print b c

for O

list do print
do print
print

in list do print 5 0
in list do print 5 O

print 0 O
00 00
00 0
00

C: Copycat Catcher

Problem author: Jannik Olbrich

Problem

= Determine whether pieces of code can be obtained by renaming variables from substrings of a
for i in list do print i j

reference
k in list do print k a
print b c
Solution
= Transform the code:
Replace each occurrence of a variable V' with for 0 in list do print 5 0
= the distance to the previous occurrence of V/, or 0 in list do print 5 O
. . 5 print 0 O
= 0 if there is no previous occurrence
= Do this for all suffixes of the reference:
for O in list do print 5 O list do print O O 00
0 in list do print 5 0 do print 0 O 0
in list do print 0 O print 0 O

= Sort these transformed suffixes lexicographically, use binary search to find the transformed query

C: Copycat Catcher

Problem author: Jannik Olbrich

Problem

= Determine whether pieces of code can be obtained by renaming variables from substrings of a

reference for i in list do print i j
k in list do print k a
print b c
Solution

= Transform the code:

Replace each occurrence of a variable V' with b G e
= the distance to the previous occurrence of V/, or 0 in list do print 5 O
print 0 O

= 0 if there is no previous occurrence
= Do this for all suffixes of the reference:

for O in list do print 5 O list do print O O 00
0 in list do print 5 0 do print 0 O 0
in list do print 0 O print 0 O

= Sort these transformed suffixes lexicographically, use binary search to find the transformed query

= Time complexity: O(n® + q - glen - log n), where glen < 2000 is the max. length of a query

D: Dark Alley

Problem author: Michael Ziindorf

Problem

Process the following queries:

+ b x: place a lamp with brightness b at position x.
- b x: remove a lamp with brightness b at position x.
? x: calculate the brightness at position x.

Note that the light reduces by a factor of p = 1 — p every metre.

lolofofofol]o]

D: Dark Alley

Problem author: Michael Ziindorf

Problem

Process the following queries:

+ b x: place a lamp with brightness b at position x.
- b x: remove a lamp with brightness b at position x.
? x: calculate the brightness at position x.

Note that the light reduces by a factor of p = 1 — p every metre.

1

025 05 [1 | 05 [o0.25 |0.125]

D: Dark Alley

Problem author: Michael Ziindorf

Solution

| 05 | 0.25 [0.125]

D: Dark Alley
Problem author: Michael Ziindorf

Solution

= Split light into two directions and store it in two data structures.
— only consider light to the right for now

1 :

| o | o [1]| o5]o0.25]0125]

D: Dark Alley
Problem author: Michael Ziindorf

Solution

= Split light into two directions and store it in two data structures.
— only consider light to the right for now
= A light with brightness b at position x contributes b - p* ™ at y > x.

1 :

| o | o [1]| o5]o0.25]0125]

D: Dark Alley
Problem author: Michael Ziindorf

Solution

= Split light into two directions and store it in two data structures.
— only consider light to the right for now
= A light with brightness b at position x contributes b - p* ™ at y > x.
= A light with brightness b - p* at position 0 has the same contribution at y.

(=

| 2 | 1] 05 025 0125]

D: Dark Alley

Problem author: Michael Ziindorf

Solution

= Split light into two directions and store it in two data structures.
— only consider light to the right for now
= A light with brightness b at position x contributes b - p* ™ at y > x.
= A light with brightness b - p* at position 0 has the same contribution at y.
= Do not propagate light.

Place bulbs at positions x,x + 1, ..., n with constant brightness b - p*.

D: Dark Alley

Problem author: Michael Ziindorf

Solution

Split light into two directions and store it in two data structures.

— only consider light to the right for now

A light with brightness b at position x contributes b - p*~™ at y > x.

A light with brightness b - p* at position 0 has the same contribution at y.
Do not propagate light.

Place bulbs at positions x,x + 1, ..., n with constant brightness b - p*.
The light at position y is now too bright by a constant factor p”.

X

For queries of type ? x, answer with ¢, - p~.

D: Dark Alley

Problem author: Michael Ziindorf

Solution

Split light into two directions and store it in two data structures.

— only consider light to the right for now

A light with brightness b at position x contributes b - p*~™ at y > x.

A light with brightness b - p* at position 0 has the same contribution at y.
Do not propagate light.

Place bulbs at positions x,x + 1, ..., n with constant brightness b - p*.
The light at position y is now too bright by a constant factor p”.

For queries of type ? x, answer with £, - p~*.

Use segment tree or fenwick tree to maintain ¢ in O(qlog(n)).

E: Even Odd Game

Problem author: Paul Wild

Problem

Find and interactively execute a winning strategy in the following game:

= There are some cards containing math operations +n and xn.
= Two players alternate picking cards until no cards are left.
= These operations are applied to a given number in the order they are picked.

= One player wins if the final result is even, the other wins if it is odd.

E: Even Odd Game

Problem author: Paul Wild

Solution

= As we only care about parity, reduce all numbers mod 2.

E: Even Odd Game

Problem author: Paul Wild

Solution

= As we only care about parity, reduce all numbers mod 2.
= So there are only three types of cards: +0, +1, X0
= Note that +0 is the same as Xx1.

E: Even Odd Game

Problem author: Paul Wild

Solution

= As we only care about parity, reduce all numbers mod 2.
= So there are only three types of cards: +0, +1, X0
= Note that +0 is the same as Xx1.

= There are at most n < 300 cards, so we can use ©(n®) dynamic programming:

Does player who win when the current value is cur and there
dp [who] [cur] [a] [b] [c] = . . -
are a, b and c operations of the respective types remaining?

E: Even Odd Game
Problem author: Paul Wild

Solution

= As we only care about parity, reduce all numbers mod 2.
= So there are only three types of cards: +0, +1, X0
= Note that +0 is the same as Xx1.

= There are at most n < 300 cards, so we can use ©(n®) dynamic programming:

Does player who win when the current value is cur and there
dp [who] [cur] [a] [b] [c] = . . -
are a, b and c operations of the respective types remaining?

= The game can be played by following along the values in the DP table.

E: Even Odd Game
Problem author: Paul Wild

Solution

= As we only care about parity, reduce all numbers mod 2.
= So there are only three types of cards: +0, +1, X0
= Note that +0 is the same as Xx1.

= There are at most n < 300 cards, so we can use ©(n®) dynamic programming:

Does player who win when the current value is cur and there
dp [who] [cur] [a] [b] [c] = . . -
are a, b and c operations of the respective types remaining?

= The game can be played by following along the values in the DP table.

E: Even Odd Game
Problem author: Paul Wild

Solution

= As we only care about parity, reduce all numbers mod 2.
= So there are only three types of cards: +0, +1, X0
= Note that +0 is the same as Xx1.

= There are at most n < 300 cards, so we can use ©(n®) dynamic programming:

Does player who win when the current value is cur and there
dp [who] [cur] [a] [b] [c] = . . -
are a, b and c operations of the respective types remaining?

= The game can be played by following along the values in the DP table.

Challenge

Can you also solve the problem for n < 10°?

F: Fair Fruitcake Fragmenting

Problem author: Jannik Olbrich

Problem
Given a point symmetric polygon, check if it can be cut into exactly two pieces of equal size along an
infinite line.

F: Fair Fruitcake Fragmenting

Problem author: Jannik Olbrich

Solution

= Polygon is point symmetric
= Parts must have equal size
—> Line has to go through centre of mass = point of symmetry

F: Fair Fruitcake Fragmenting

Problem author: Jannik Olbrich

Solution

= Polygon is point symmetric

= Parts must have equal size
—> Line has to go through centre of mass = point of symmetry
= We can do a sweepline around centre of mass

F: Fair Fruitcake Fragmenting

Problem author: Jannik Olbrich

Solution

= Polygon is point symmetric
= Parts must have equal size
—> Line has to go through centre of mass = point of symmetry
= We can do a sweepline around centre of mass
= Due to symmetry, it is sufficient to keep track of the upper half of the polygon

F: Fair Fruitcake Fragmenting

Problem author: Jannik Olbrich

Solution

= Polygon is point symmetric
= Parts must have equal size
—> Line has to go through centre of mass = point of symmetry
= We can do a sweepline around centre of mass
= Due to symmetry, it is sufficient to keep track of the upper half of the polygon
= Sweepline is valid answer << sweepline intersects the polygon exactly once

1/ /l

F: Fair Fruitcake Fragmenting

Problem author: Jannik Olbrich

Sweepline

= Number of intersections can only change at corners

£ ¥ 00 &

a: —2 b: +2 c: =2 d: +2

F: Fair Fruitcake Fragmenting

Problem author: Jannik Olbrich

Sweepline

= Number of intersections can only change at corners
= -+ events come before — events

£ ¥ 00 &

a: —2 b: +2 c: =2 d: +2

F: Fair Fruitcake Fragmenting

Problem author: Jannik Olbrich

Sweepline

= Number of intersections can only change at corners
= -+ events come before — events
= |f after a type a event the sweepline has size 1, the line is ok
= Type c events are only ok if we can rotate an ¢ further
(add a dummy event halfway to the next actual event)

£ ¥ 00 &

a: —2 b: +2 c: =2 d: +2

F: Fair Fruitcake Fragmenting

Problem author: Jannik Olbrich

Edgecase
There might be no valid cut line that goes through any corner

F: Fair Fruitcake Fragmenting

Problem author: Jannik Olbrich

Edgecase
There might be no valid cut line that goes through any corner

I\\\ \

F: Fair Fruitcake Fragmenting

Problem author: Jannik Olbrich

Edgecase
There might be no valid cut line that goes through any corner

I \\ \

G: Geometric Gridlock

Problem author: Paul Wild

Problem

Construct a valid Pentominous grid of a given size:

= Divide an h X w grid into regions of size 5 (pentominoes). . .

= . ..such that no two adjacent regions have the same shape.

G: Geometric Gridlock

Problem author: Paul Wild

Insights and corner cases

= One of h or w must be a multiple of 5; by symmetry, assume it's w.

G: Geometric Gridlock

Problem author: Paul Wild

Insights and corner cases
= One of h or w must be a multiple of 5; by symmetry, assume it's w.

= 1 X w is only solvable for w = 5:

G: Geometric Gridlock

Problem author: Paul Wild

Insights and corner cases
= One of h or w must be a multiple of 5; by symmetry, assume it's w.

= 1 X w is only solvable for w = 5:

[TTTT] [IITTTITTTT]

= 2 X 5 is not solvable:

G: Geometric Gridlock

Problem author: Paul Wild

Insights and corner cases
= One of h or w must be a multiple of 5; by symmetry, assume it's w.

= 1 X w is only solvable for w = 5:

[TTTT] [IITTTITTTT]

= 2 X 5 is not solvable:

= 2 X w is solvable in all other cases:

G: Geometric Gridlock

Problem author: Paul Wild

Insights and corner cases
= One of h or w must be a multiple of 5; by symmetry, assume it's w.

= 1 X w is only solvable for w = 5:

[TTTT] [IITTTITTTT]

= 2 X 5 is not solvable:

= 2 X w is solvable in all other cases:

G: Geometric Gridlock

Problem author: Paul Wild

Insights and corner cases
= One of h or w must be a multiple of 5; by symmetry, assume it's w.

= 1 X w is only solvable for w = 5:

[TTTT] [IITTTITTTT]

= 2 X 5 is not solvable:

= 2 X w is solvable in all other cases:

G: Geometric Gridlock

Problem author: Paul Wild

Solution

= For 3 X 5 we can come up with a solution that can be repeated to achieve any width:

G: Geometric Gridlock

Problem author: Paul Wild

Solution

= For 3 X 5 we can come up with a solution that can be repeated to achieve any width:

G: Geometric Gridlock

Problem author: Paul Wild

Solution

= For 3 X 5 we can come up with a solution that can be repeated to achieve any width:

G: Geometric Gridlock

Problem author: Paul Wild

Solution

= For 3 X 5 we can come up with a solution that can be repeated to achieve any width:

= Similar repeatable patterns exist for heights 4, 5, 6 and 7:

G: Geometric Gridlock

Problem author: Paul Wild

Solution (continued)

= With some care, these patterns can be chosen so that they tile along both directions:

G: Geometric Gridlock

Problem author: Paul Wild

Solution (continued)

= With some care, these patterns can be chosen so that they tile along both directions:

G: Geometric Gridlock

Problem author: Paul Wild

Solution (continued)

= With some care, these patterns can be chosen so that they tile along both directions:

G: Geometric Gridlock

Problem author: Paul Wild

Solution (continued)

= With some care, these patterns can be chosen so that they tile along both directions:

G: Geometric Gridlock

Problem author: Paul Wild

Solution (continued)

= With some care, these patterns can be chosen so that they tile along both directions:

G: Geometric Gridlock

Problem author: Paul Wild

Solution (continued)

= With some care, these patterns can be chosen so that they tile along both directions:

= This way, we can reduce any height h to one of the base cases 3, 4, 5, 6 or 7.

H: Headline Heat

Problem author: Christopher Weyand

Problem

= Given n < 10° university names, m < 10° rivalries between universities, and k < 10° texts. For
each text, answer if there are two rivalling universities with different number of occurrences.
The summed length of all names and texts is W < 10°.

H: Headline Heat

Problem author: Christopher Weyand

Problem

= Given n < 10° university names, m < 10° rivalries between universities, and k < 10° texts. For
each text, answer if there are two rivalling universities with different number of occurrences.
The summed length of all names and texts is W < 10°.

Solution
First a solution in time O(mW).

H: Headline Heat

Problem author: Christopher Weyand

Problem

= Given n < 10° university names, m < 10° rivalries between universities, and k < 10° texts. For
each text, answer if there are two rivalling universities with different number of occurrences.
The summed length of all names and texts is W < 10°.

Solution
First a solution in time O(mW).

= build Aho-Corasick automaton out of all the names

H: Headline Heat

Problem author: Christopher Weyand

Problem

= Given n < 10° university names, m < 10° rivalries between universities, and k < 10° texts. For
each text, answer if there are two rivalling universities with different number of occurrences.
The summed length of all names and texts is W < 10°.

Solution
First a solution in time O(mW).

= build Aho-Corasick automaton out of all the names

= each state stores m long vector that tracks for each rivalry the difference in occurrence, initially 0

H: Headline Heat

Problem author: Christopher Weyand

Problem

= Given n < 10° university names, m < 10° rivalries between universities, and k < 10° texts. For
each text, answer if there are two rivalling universities with different number of occurrences.
The summed length of all names and texts is W < 10°.

Solution
First a solution in time O(mW).

= build Aho-Corasick automaton out of all the names
= each state stores m long vector that tracks for each rivalry the difference in occurrence, initially 0

= for rivalry i between u and v, add +1 to the ith entry of the vector of states that accept u and -1

in states that accept v

H: Headline Heat

Problem author: Christopher Weyand

Problem

= Given n < 10° university names, m < 10° rivalries between universities, and k < 10° texts. For
each text, answer if there are two rivalling universities with different number of occurrences.
The summed length of all names and texts is W < 10°.

Solution
First a solution in time O(mW).

= build Aho-Corasick automaton out of all the names
= each state stores m long vector that tracks for each rivalry the difference in occurrence, initially 0

= for rivalry i between u and v, add +1 to the ith entry of the vector of states that accept u and -1
in states that accept v

= to process an article, feed the text into the automaton and add the m long vectors up element wise

H: Headline Heat

Problem author: Christopher Weyand

Problem

= Given n < 10° university names, m < 10° rivalries between universities, and k < 10° texts. For
each text, answer if there are two rivalling universities with different number of occurrences.
The summed length of all names and texts is W < 10°.

Solution
First a solution in time O(mW).

= build Aho-Corasick automaton out of all the names
= each state stores m long vector that tracks for each rivalry the difference in occurrence, initially 0

= for rivalry i between u and v, add +1 to the ith entry of the vector of states that accept u and -1
in states that accept v

= to process an article, feed the text into the automaton and add the m long vectors up element wise

= a text is safe if we get a vector with all Os

H: Headline Heat

Problem author: Christopher Weyand

Problem

Given n < 10° university names, m < 10° rivalries between universities, and k < 10° texts. For
each text, answer if there are two rivalling universities with different number of occurrences.
The summed length of all names and texts is W < 10°.

Solution
First a solution in time O(mW).

To

build Aho-Corasick automaton out of all the names
each state stores m long vector that tracks for each rivalry the difference in occurrence, initially 0

for rivalry i between u and v, add +1 to the ith entry of the vector of states that accept v and -1
in states that accept v

to process an article, feed the text into the automaton and add the m long vectors up element wise

a text is safe if we get a vector with all Os

avoid quadratic time, hash the vectors. Runtime: O(n+ m + k)

I: Interference

Problem author: Sebastian Angrick

Problem

= Given some alternating range updates, answer point queries

I: Interference

Problem author: Sebastian Angrick

Problem

= Given some alternating range updates, answer point queries

Solution

= Range is too large to work with, ignore it

I: Interference

Problem author: Sebastian Angrick

Problem

= Given some alternating range updates, answer point queries

Solution
= Range is too large to work with, ignore it

= O(n?) is sufficient, for each query simulate all former updates.

I: Interference

Problem author: Sebastian Angrick

Problem

= Given some alternating range updates, answer point queries

Solution
= Range is too large to work with, ignore it
= O(n?) is sufficient, for each query simulate all former updates.

= Pitfalls: Results can be large (long long may be needed) or negative, correctly deal with alternation

J: Jigsaw Present

Problem author: Erik Siinderhauf

Problem

= Given n < 4096 pairs of numbers (x;, yi), with 1 < x; <4096 =: C and |y;| < C. Find two
distinct subsets with the same sum or report that this is not possible.

J: Jigsaw Present

Problem author: Erik Siinderhauf

Problem
= Given n < 4096 pairs of numbers (x;, yi), with 1 < x; <4096 =: C and |y;| < C. Find two
distinct subsets with the same sum or report that this is not possible.
Solution

= The coordinates are too large to run a dp solution, so we should look for a brute force approach.

J: Jigsaw Present

Problem author: Erik Siinderhauf

Problem

= Given n < 4096 pairs of numbers (x;, yi), with 1 < x; <4096 =: C and |y;| < C. Find two
distinct subsets with the same sum or report that this is not possible.

Solution

= The coordinates are too large to run a dp solution, so we should look for a brute force approach.

= We could solve this in O(3") by deciding for each element whether it should go in the 1st subset,
the 2nd subset, or none of the subsets.

J: Jigsaw Present

Problem author: Erik Siinderhauf

Problem

= Given n < 4096 pairs of numbers (x;, yi), with 1 < x; <4096 =: C and |y;| < C. Find two
distinct subsets with the same sum or report that this is not possible.

Solution

= The coordinates are too large to run a dp solution, so we should look for a brute force approach.

= We could solve this in O(3") by deciding for each element whether it should go in the 1st subset,
the 2nd subset, or none of the subsets.

= Optimize with meet-in-the-middle to O(3"/2) by computing all possible sums of the form

n/2 n
Zs; < (xi, i), Z si-(xi,yi), s €{-1,0,1}
i=1 i=n/2+1

and finding a collision.

J: Jigsaw Present

Problem author: Erik Siinderhauf

Problem

= Given n < 4096 pairs of numbers (x;, yi), with 1 < x; <4096 =: C and |y;| < C. Find two
distinct subsets with the same sum or report that this is not possible.

Solution

= The coordinates are too large to run a dp solution, so we should look for a brute force approach.

= We could solve this in O(3") by deciding for each element whether it should go in the 1st subset,
the 2nd subset, or none of the subsets.

= Optimize with meet-in-the-middle to O(3"/2) by computing all possible sums of the form

n/2 n
Zs; < (xi, i), Z si-(xi,yi), s €{-1,0,1}
i=1 i=n/2+1

and finding a collision.

= But n is waaay too large for this approach...

J: Jigsaw Present

Problem author: Erik Siinderhauf

Insights

= We can have up to 2" possible subset sums, which is exponential in n.

J: Jigsaw Present

Problem author: Erik Siinderhauf

Insights
= We can have up to 2" possible subset sums, which is exponential in n.

= However, the absolute value of the coordinates in any subset sum are always < n- C, which is
polynomial in n!

J: Jigsaw Present

Problem author: Erik Siinderhauf

Insights
= We can have up to 2" possible subset sums, which is exponential in n.

= However, the absolute value of the coordinates in any subset sum are always < n- C, which is
polynomial in n!

Solution

= If nis large enough we can always find two distinct subsets with the same sum. Just don =
min(n, N) at the beginning of your code. (N ~ 28 — 32)

J: Jigsaw Present

Problem author: Erik Siinderhauf

Insights
= We can have up to 2" possible subset sums, which is exponential in n.

= However, the absolute value of the coordinates in any subset sum are always < n- C, which is
polynomial in n!

Solution

= If nis large enough we can always find two distinct subsets with the same sum. Just don =
min(n, N) at the beginning of your code. (N ~ 28 — 32)

= One can prove that for n > 32 there always is a collision (short sketch on next slide).

J: Jigsaw Present

Problem author: Erik Siinderhauf

Insights
= We can have up to 2" possible subset sums, which is exponential in n.

= However, the absolute value of the coordinates in any subset sum are always < n- C, which is

polynomial in n!

Solution

= If nis large enough we can always find two distinct subsets with the same sum. Just don =
min(n, N) at the beginning of your code. (N ~ 28 — 32)

= One can prove that for n > 32 there always is a collision (short sketch on next slide).

= Challenge: Construct test cases without collision and with a large n. The best case we could

achieve has n = 27. Hint: powers of 2 are not useful.

J: Jigsaw Present

Problem author: Erik Siinderhauf

Proof sketch
Let (X, Y) be the total sum of all pairs. Pick a random subset with sum (X, 7). Using Chebyshev’s

"

inequality you can show that the probability that we are “close”’ to the total sum

g

(%,9) - 3(X, V)| 5 vaC

happens with probability > 1/2. Note that there are O(nC2) possible sums that are “close”. If all
subset sums that are “close” to the total sum are distinct, then this requires

2!7/2
=Cz —.

Jn

Inserting numbers and more details' shows that we always have a collision for n > 32.

nC>.27" >

N =

!search for “Probabilistic method”

K: Kitten of C

Problem author: Paul Wild

Problem

Apply a bunch of rotations and reflections to a string consisting of bdpq:
= h: horizontal flip: bbq <+ pdd
= v: vertical flip: bbq <+ ppd
= r: 180 degree rotation: bbq <> bqq

K: Kitten of Chaos
Problem author: Paul Wild

Problem

Apply a bunch of rotations and reflections to a string consisting of bdpq:

= h: horizontal flip: bbq <+ pdd

= v: vertical flip: bbq <+ ppd

= r: 180 degree rotation: bbq <> bqq
Solution

= Applying all the transformations one by one takes @(nz) time, too slow!

K: Kitten of Chaos

Problem author: Paul Wild

Problem

Apply a bunch of rotations and reflections to a string consisting of bdpq:
= h: horizontal flip: bbq <+ pdd

= v: vertical flip: bbq <+ ppd

= r: 180 degree rotation: bbq <> bqq

Solution

= Applying all the transformations one by one takes @(nz) time, too slow!
= Instead, we make some observations:

= we may replace each r by hv

= doing vh is the same as hv ~~ move all h to the front

= we only need to know if the number of h is even or odd (same for v)

K: Kitten of Chaos

Problem author: Paul Wild

Problem

Apply a bunch of rotations and reflections to a string consisting of bdpq:
= h: horizontal flip: bbq <+ pdd

= v: vertical flip: bbq <+ ppd

= r: 180 degree rotation: bbq <> bqq

Solution

= Applying all the transformations one by one takes @(nz) time, too slow!
= Instead, we make some observations:

= we may replace each r by hv

= doing vh is the same as hv ~~ move all h to the front

= we only need to know if the number of h is even or odd (same for v)

= Using these, we only need to do at most one h and at most one v transformation

K: Kitten of Chaos

Problem author: Paul Wild

Problem

Apply a bunch of rotations and reflections to a string consisting of bdpq:

= h: horizontal flip: bbq <+ pdd
= v: vertical flip: bbq <+ ppd
= r: 180 degree rotation: bbq <> bqq

Solution

= Applying all the transformations one by one takes @(nz) time, too slow!
= |Instead, we make some observations:

= we may replace each r by hv
= doing vh is the same as hv ~» move all h to the front
= we only need to know if the number of h is even or odd (same for v)

Using these, we only need to do at most one h and at most one v transformation.
All of this can be done in O(n) time.

L: Laundry

Problem author: Wendy Yi

Problem
Given the capacity 1 < k < 10° of a washing machine with three programmes, and how many items

can be washed with which programmes.
What is the minimum number of loads needed to wash all items?

L: Laundry

Problem author: Wendy Yi

Problem

Given the capacity 1 < k < 10° of a washing machine with three programmes, and how many items
can be washed with which programmes.

What is the minimum number of loads needed to wash all items?

Insights
))))) k=10
= [tems with no choice and items with all choices
are easy. A:14
B:6

C:5

L: Laundry

Problem author: Wendy Yi

Problem
Given the capacity 1 < k < 10° of a washing machine with three programmes, and how many items

can be washed with which programmes.
What is the minimum number of loads needed to wash all items?

Insights
) . .) . k=10
= |tems with no choice and items with all choices
are easy. A:16
= |f we assign all items of one set with two B:7
choices, an optimal solution for the rest can be C:5

determined greedily.

L: Laundry

Problem author: Wendy Yi

Problem
Given the capacity 1 < k < 10° of a washing machine with three programmes, and how many items

can be washed with which programmes.
What is the minimum number of loads needed to wash all items?

Insights
) . .) . k=10
= |tems with no choice and items with all choices
are easy. A:20
= |f we assign all items of one set with two B:10
choices, an optimal solution for the rest can be C:10

determined greedily.

L: Laundry

Problem author: Wendy Yi

Problem

Given the capacity 1 < k < 10° of a washing machine with three programmes, and how many items
can be washed with which programmes.

What is the minimum number of loads needed to wash all items?

Insights
) . .) . k=10
= |tems with no choice and items with all choices
are easy. A:20
= |f we assign all items of one set with two B:10
choices, an optimal solution for the rest can be C:10

determined greedily.

= There is an optimal solution where there is one
set of items with two choices that is assigned
to the same programme.

L: Laundry

Problem author: Wendy Yi

Problem

Given the capacity 1 < k < 10° of a washing machine with three programmes, and how many items
can be washed with which programmes.

What is the minimum number of loads needed to wash all items?

Insights
) . .) . k=10
= |tems with no choice and items with all choices
are easy. A:20
= |f we assign all items of one set with two B:10
choices, an optimal solution for the rest can be C:10

determined greedily.

= There is an optimal solution where there is one
set of items with two choices that is assigned
to the same programme.

L: Laundry

Problem author: Wendy Yi

Problem
Given the capacity 1 < k < 10° of a washing machine with three programmes, and how many items

can be washed with which programmes.
What is the minimum number of loads needed to wash all items?

Solution

= Process items that can only be washed with one programme first.

L: Laundry

Problem author: Wendy Yi

Problem
Given the capacity 1 < k < 10° of a washing machine with three programmes, and how many items

can be washed with which programmes.
What is the minimum number of loads needed to wash all items?

Solution
= Process items that can only be washed with one programme first.

= For each set with two choices:

L: Laundry

Problem author: Wendy Yi

Problem
Given the capacity 1 < k < 10° of a washing machine with three programmes, and how many items

can be washed with which programmes.
What is the minimum number of loads needed to wash all items?

Solution
= Process items that can only be washed with one programme first.

= For each set with two choices:
= Try to assign the whole set to one of the two choices.

L: Laundry

Problem author: Wendy Yi

Problem
Given the capacity 1 < k < 10° of a washing machine with three programmes, and how many items

can be washed with which programmes.
What is the minimum number of loads needed to wash all items?

Solution
= Process items that can only be washed with one programme first.

= For each set with two choices:

= Try to assign the whole set to one of the two choices.
= Determine the optimal solution for the other sets with two choices.

L: Laundry

Problem author: Wendy Yi

Problem
Given the capacity 1 < k < 10° of a washing machine with three programmes, and how many items

can be washed with which programmes.
What is the minimum number of loads needed to wash all items?

Solution
= Process items that can only be washed with one programme first.

= For each set with two choices:

= Try to assign the whole set to one of the two choices.
= Determine the optimal solution for the other sets with two choices.

= Distribute the items with three choices optimally.

L: Laundry

Problem author: Wendy Yi

Problem
Given the capacity 1 < k < 10° of a washing machine with three programmes, and how many items

can be washed with which programmes.
What is the minimum number of loads needed to wash all items?

Solution
= Process items that can only be washed with one programme first.

= For each set with two choices:

= Try to assign the whole set to one of the two choices.
= Determine the optimal solution for the other sets with two choices.

= Distribute the items with three choices optimally.

= Take the minimum over all such assignments (6 in total).

L: Laundry

Problem author: Wendy Yi

Problem
Given the capacity 1 < k < 10° of a washing machine with three programmes, and how many items

can be washed with which programmes.
What is the minimum number of loads needed to wash all items?

Solution
= Process items that can only be washed with one programme first.

= For each set with two choices:

= Try to assign the whole set to one of the two choices.
= Determine the optimal solution for the other sets with two choices.

= Distribute the items with three choices optimally.

= Take the minimum over all such assignments (6 in total).

L: Laundry

Problem author: Wendy Yi

Problem
Given the capacity 1 < k < 10° of a washing machine with three programmes, and how many items

can be washed with which programmes.
What is the minimum number of loads needed to wash all items?

Solution
= Process items that can only be washed with one programme first.

= For each set with two choices:

= Try to assign the whole set to one of the two choices.
= Determine the optimal solution for the other sets with two choices.

= Distribute the items with three choices optimally.

= Take the minimum over all such assignments (6 in total).

Running time: O(1) per test case

M: Musical Mending

Problem author: Brutenis Gliwa, Marian Zuska

Problem

= Problem: Find the minimal distance from the input sequence to any sequence
X, x+1,x+2,...,x+n—1.

M: Musical Mending

Problem author: Brutenis Gliwa, Marian Zuska

Problem
= Problem: Find the minimal distance from the input sequence to any sequence
X, x+1,x+2,...,x+n—1
Solution

= For a fixed x, the distance can be determined in O(n).

M: Musical Mending

Problem author: Brutenis Gliwa, Marian Zuska

Problem

= Problem: Find the minimal distance from the input sequence to any sequence
X, x+1,x+2,...,x+n—1.
Solution

= For a fixed x, the distance can be determined in O(n).

= Naive solution: Compute the distance for all possible x € [-250 000, 200 000]. O(v - n) is too slow!

M: Musical Mending

Problem author: Brutenis Gliwa, Marian Zuska

Problem

= Problem: Find the minimal distance from the input sequence to any sequence
X, x+1,x+2,...,x+n—1.

Solution

= For a fixed x, the distance can be determined in O(n).
= Naive solution: Compute the distance for all possible x € [-250 000, 200 000]. O(v - n) is too slow!

= Binary searching x does not work, as the score is not a monotonic function.

M: Musical Mending

Problem author: Brutenis Gliwa, Marian Zuska

Problem
= Problem: Find the minimal distance from the input sequence to any sequence
X, x+1,x+2,...,x+n—1.
Solution
= For a fixed x, the distance can be determined in O(n).
= Naive solution: Compute the distance for all possible x € [-250 000, 200 000]. O(v - n) is too slow!
= Binary searching x does not work, as the score is not a monotonic function.

= Ternary search the answer over all possible x! O(log(v) - n)

Jury work

= 583 secret test cases (= 45 per problem)

Jury work
= 583 secret test cases (= 45 per problem)

= 149 jury solutions

Jury work
= 583 secret test cases (= 45 per problem)
= 149 jury solutions

= The minimum number of lines the jury needed to solve all problems is
8+3+214+43+32+53+23+46+16+38+6+ 18+ 6 =313

On average 24.1 lines per problem

Jury work
= 583 secret test cases (= 45 per problem)
= 149 jury solutions

= The minimum number of lines the jury needed to solve all problems is
8+3+214+43+32+53+23+46+16+38+6+ 18+ 6 =313

On average 24.1 lines per problem

= The minimum number of characters the jury needed to solve all problems is
231 + 196 + 495 + 828 + 674 + 1109 + 818 + 1407 + 393 + 952 + 254 + 615 + 231

On average 631 characters per problem

