
Solution Outlines

Jury

GCPC 2014

Jury (GCPC 2014) Solution Outlines 1 / 15

Algebraic Teamwork

Algebraic problem
Determine the number of non-idempotent permutations
on some finite set.

Intuition: Identity is the only idempotent permutation.

Proof. Let f : A→ A be idempotent & bijective:
f (a)

bijective

= f −1 ◦ f ◦ f (a)
idempotent

= f −1 ◦ f (a)
bijective

= id(a)

Solution
For input n, print (n!− 1) mod 109 + 9.
(Substracting 1 without mod worked because of lucky constraints).

Jury (GCPC 2014) Solution Outlines 2 / 15

Algebraic Teamwork

Algebraic problem
Determine the number of non-idempotent permutations
on some finite set.

Intuition: Identity is the only idempotent permutation.

Proof. Let f : A→ A be idempotent & bijective:
f (a)

bijective

= f −1 ◦ f ◦ f (a)
idempotent

= f −1 ◦ f (a)
bijective

= id(a)

Solution
For input n, print (n!− 1) mod 109 + 9.
(Substracting 1 without mod worked because of lucky constraints).

Jury (GCPC 2014) Solution Outlines 2 / 15

Algebraic Teamwork

Algebraic problem
Determine the number of non-idempotent permutations
on some finite set.

Intuition: Identity is the only idempotent permutation.
Proof. Let f : A→ A be idempotent & bijective:

f (a)
bijective

= f −1 ◦ f ◦ f (a)
idempotent

= f −1 ◦ f (a)
bijective

= id(a)

Solution
For input n, print (n!− 1) mod 109 + 9.
(Substracting 1 without mod worked because of lucky constraints).

Jury (GCPC 2014) Solution Outlines 2 / 15

Algebraic Teamwork

Algebraic problem
Determine the number of non-idempotent permutations
on some finite set.

Intuition: Identity is the only idempotent permutation.
Proof. Let f : A→ A be idempotent & bijective:

f (a)
bijective

= f −1 ◦ f ◦ f (a)
idempotent

= f −1 ◦ f (a)
bijective

= id(a)

Solution
For input n, print (n!− 1) mod 109 + 9.
(Substracting 1 without mod worked because of lucky constraints).

Jury (GCPC 2014) Solution Outlines 2 / 15

Beam me out!

Evidently, the maze is a directed graph.

If a cycle is reachable from room 1, you can get
stuck if you are unlucky.

Else the number of beaming operations is limited.

⇒ Detect cycles with DFS.

If the graph contains (reachable) dead ends, we
don’t have a warranty that we reach the goal room.

Else the probability is 100%.

⇒ Use DFS on reversed graph.

Combine information from both DFS runs.

Jury (GCPC 2014) Solution Outlines 3 / 15

Beam me out!

Evidently, the maze is a directed graph.

If a cycle is reachable from room 1, you can get
stuck if you are unlucky.

Else the number of beaming operations is limited.

⇒ Detect cycles with DFS.

If the graph contains (reachable) dead ends, we
don’t have a warranty that we reach the goal room.

Else the probability is 100%.

⇒ Use DFS on reversed graph.

Combine information from both DFS runs.

Jury (GCPC 2014) Solution Outlines 3 / 15

Beam me out!

Evidently, the maze is a directed graph.

If a cycle is reachable from room 1, you can get
stuck if you are unlucky.

Else the number of beaming operations is limited.

⇒ Detect cycles with DFS.

If the graph contains (reachable) dead ends, we
don’t have a warranty that we reach the goal room.

Else the probability is 100%.

⇒ Use DFS on reversed graph.

Combine information from both DFS runs.

Jury (GCPC 2014) Solution Outlines 3 / 15

Bounty Hunter

Problem: Traveling Salesman Problem
in 2D Euclidean space

additional bitonic restriction

Jury (GCPC 2014) Solution Outlines 4 / 15

Bounty Hunter

s

1

2

3

4

5

Possible Solution
partition trip into a left-to-right (LR) and a
right-to-left (RL) path
iterate over all places v from left to right

put v in the LR path or in the RL path

use DP
Jury (GCPC 2014) Solution Outlines 5 / 15

Bounty Hunter

s

1

2

v

4

5

Possible Solution
DP with state (v , last in LR, first in RL) is in O(n3).

However v can be computed as max(LR ,RL) + 1.

⇒ O(n2) solution

Jury (GCPC 2014) Solution Outlines 6 / 15

Connected Caves

Input is a directed acyclic graph (DAG).

Trying all paths would be exponential.

However, the sub-result for trying all paths
downwards a specific cave will not change.

⇒ DFS with Memoization

⇒ O(N + E)

Alternative solution: topologically sort caves + DP

⇒ O(N + E)

Jury (GCPC 2014) Solution Outlines 7 / 15

Connected Caves

Input is a directed acyclic graph (DAG).

Trying all paths would be exponential.

However, the sub-result for trying all paths
downwards a specific cave will not change.

⇒ DFS with Memoization

⇒ O(N + E)

Alternative solution: topologically sort caves + DP

⇒ O(N + E)

Jury (GCPC 2014) Solution Outlines 7 / 15

Connected Caves

Input is a directed acyclic graph (DAG).

Trying all paths would be exponential.

However, the sub-result for trying all paths
downwards a specific cave will not change.

⇒ DFS with Memoization

⇒ O(N + E)

Alternative solution: topologically sort caves + DP

⇒ O(N + E)

Jury (GCPC 2014) Solution Outlines 7 / 15

Connected Caves

Input is a directed acyclic graph (DAG).

Trying all paths would be exponential.

However, the sub-result for trying all paths
downwards a specific cave will not change.

⇒ DFS with Memoization

⇒ O(N + E)

Alternative solution: topologically sort caves + DP

⇒ O(N + E)

Jury (GCPC 2014) Solution Outlines 7 / 15

Connected Caves

Input is a directed acyclic graph (DAG).

Trying all paths would be exponential.

However, the sub-result for trying all paths
downwards a specific cave will not change.

⇒ DFS with Memoization

⇒ O(N + E)

Alternative solution: topologically sort caves + DP

⇒ O(N + E)

Jury (GCPC 2014) Solution Outlines 7 / 15

Connected Caves

Input is a directed acyclic graph (DAG).

Trying all paths would be exponential.

However, the sub-result for trying all paths
downwards a specific cave will not change.

⇒ DFS with Memoization

⇒ O(N + E)

Alternative solution: topologically sort caves + DP

⇒ O(N + E)

Jury (GCPC 2014) Solution Outlines 7 / 15

Connected Caves

Input is a directed acyclic graph (DAG).

Trying all paths would be exponential.

However, the sub-result for trying all paths
downwards a specific cave will not change.

⇒ DFS with Memoization

⇒ O(N + E)

Alternative solution: topologically sort caves + DP

⇒ O(N + E)

Jury (GCPC 2014) Solution Outlines 7 / 15

Equator

Linear version i.e. without wrapping DP

p(i) =

{
0 if i < 0

ci + max(0, p(i − 1)) else
⇒ max
−1≤i<n

p(i)

With wrapping
Optimal solution does not wrap?
 Can be found by linear version.

Optimal solution wraps?
 Find minimal interval of cities not to rob
(identical DP) and subtract it from total ci sum.

Jury (GCPC 2014) Solution Outlines 8 / 15

Equator

Linear version i.e. without wrapping DP

p(i) =

{
0 if i < 0

ci + max(0, p(i − 1)) else
⇒ max
−1≤i<n

p(i)

With wrapping
Optimal solution does not wrap?
 Can be found by linear version.

Optimal solution wraps?
 Find minimal interval of cities not to rob
(identical DP) and subtract it from total ci sum.

Jury (GCPC 2014) Solution Outlines 8 / 15

Gold Rush

Math problem of the set

Consider a =
n∑

i=0

ai2
i in binary notation

As a + b = 2n, the smallest non-zero index i ′ must
be identical

Counting downwards from n to i ′, the answer is
c := n − i ′

Running time O(n) with step-by-step bisections of a
until zero.

Jury (GCPC 2014) Solution Outlines 9 / 15

Gold Rush

Math problem of the set

Consider a =
n∑

i=0

ai2
i in binary notation

As a + b = 2n, the smallest non-zero index i ′ must
be identical

Counting downwards from n to i ′, the answer is
c := n − i ′

Running time O(n) with step-by-step bisections of a
until zero.

Jury (GCPC 2014) Solution Outlines 9 / 15

Gold Rush

Math problem of the set

Consider a =
n∑

i=0

ai2
i in binary notation

As a + b = 2n, the smallest non-zero index i ′ must
be identical

Counting downwards from n to i ′, the answer is
c := n − i ′

Running time O(n) with step-by-step bisections of a
until zero.

Jury (GCPC 2014) Solution Outlines 9 / 15

Gold Rush

Math problem of the set

Consider a =
n∑

i=0

ai2
i in binary notation

As a + b = 2n, the smallest non-zero index i ′ must
be identical

Counting downwards from n to i ′, the answer is
c := n − i ′

Running time O(n) with step-by-step bisections of a
until zero.

Jury (GCPC 2014) Solution Outlines 9 / 15

Gold Rush

Math problem of the set

Consider a =
n∑

i=0

ai2
i in binary notation

As a + b = 2n, the smallest non-zero index i ′ must
be identical

Counting downwards from n to i ′, the answer is
c := n − i ′

Running time O(n) with step-by-step bisections of a
until zero.

Jury (GCPC 2014) Solution Outlines 9 / 15

Jewelry Exhibition

1 2 3 4

1
2
3
4

1
2
3
4

1
2
3
4 Rows and columns form a

bipartite graph.

Exhibit at (x , y) represent
an edge {adxe, bdye}.

1 2 3 4

1
2
3
4

1
2
3
4

1
2
3
4

⇒ Find size of the minimum
vertex cover.

König-Egerváry Theorem: sizes of minimum vertex
cover and maximum matching are equal in bipartite
graphs.

Solution: find maximum matching in O(N2M).

Jury (GCPC 2014) Solution Outlines 10 / 15

Jewelry Exhibition

1 2 3 4

1
2
3
4

1
2
3
4

1
2
3
4 Rows and columns form a

bipartite graph.

Exhibit at (x , y) represent
an edge {adxe, bdye}.

1 2 3 4

1
2
3
4

1
2
3
4

1
2
3
4

⇒ Find size of the minimum
vertex cover.

König-Egerváry Theorem: sizes of minimum vertex
cover and maximum matching are equal in bipartite
graphs.

Solution: find maximum matching in O(N2M).

Jury (GCPC 2014) Solution Outlines 10 / 15

Jewelry Exhibition

1 2 3 4

1
2
3
4

1
2
3
4

1
2
3
4 Rows and columns form a

bipartite graph.

Exhibit at (x , y) represent
an edge {adxe, bdye}.

1 2 3 4

1
2
3
4

1
2
3
4

1
2
3
4

⇒ Find size of the minimum
vertex cover.

König-Egerváry Theorem: sizes of minimum vertex
cover and maximum matching are equal in bipartite
graphs.

Solution: find maximum matching in O(N2M).

Jury (GCPC 2014) Solution Outlines 10 / 15

JuQueen

Naive solution requires C · O: ∼ 1011 operations

Coord compression reduces C to 4 · O: ∼ 1010 ops

⇒ Advanced data structure necessary

Segment tree with lazy propagation

Inner nodes represent intervals

Store minimum, maximum and value in each node

Propagate values only when necessary

Answer queries in O(log n)

(Even more efficient: combine both ideas)

Don’t use billions of objects in Java – your Garbage
Collector will go crazy!

Jury (GCPC 2014) Solution Outlines 11 / 15

JuQueen

Naive solution requires C · O: ∼ 1011 operations

Coord compression reduces C to 4 · O: ∼ 1010 ops

⇒ Advanced data structure necessary

Segment tree with lazy propagation

Inner nodes represent intervals

Store minimum, maximum and value in each node

Propagate values only when necessary

Answer queries in O(log n)

(Even more efficient: combine both ideas)

Don’t use billions of objects in Java – your Garbage
Collector will go crazy!

Jury (GCPC 2014) Solution Outlines 11 / 15

JuQueen

Naive solution requires C · O: ∼ 1011 operations

Coord compression reduces C to 4 · O: ∼ 1010 ops

⇒ Advanced data structure necessary

Segment tree with lazy propagation

Inner nodes represent intervals

Store minimum, maximum and value in each node

Propagate values only when necessary

Answer queries in O(log n)

(Even more efficient: combine both ideas)

Don’t use billions of objects in Java – your Garbage
Collector will go crazy!

Jury (GCPC 2014) Solution Outlines 11 / 15

JuQueen

Naive solution requires C · O: ∼ 1011 operations

Coord compression reduces C to 4 · O: ∼ 1010 ops

⇒ Advanced data structure necessary

Segment tree with lazy propagation

Inner nodes represent intervals

Store minimum, maximum and value in each node

Propagate values only when necessary

Answer queries in O(log n)

(Even more efficient: combine both ideas)

Don’t use billions of objects in Java – your Garbage
Collector will go crazy!

Jury (GCPC 2014) Solution Outlines 11 / 15

JuQueen

Naive solution requires C · O: ∼ 1011 operations

Coord compression reduces C to 4 · O: ∼ 1010 ops

⇒ Advanced data structure necessary

Segment tree with lazy propagation

Inner nodes represent intervals

Store minimum, maximum and value in each node

Propagate values only when necessary

Answer queries in O(log n)

(Even more efficient: combine both ideas)

Don’t use billions of objects in Java – your Garbage
Collector will go crazy!

Jury (GCPC 2014) Solution Outlines 11 / 15

Laser Cutting

Basic geometry problem
Required algorithms:

Intersection of two lines
Point in polygon

First condition: Every line of a polyline may only
intersect with the next and the previous line of that
polyline.

Second condition: For two different polylines, any
line from the first may not intersect with any line
from the second.

Jury (GCPC 2014) Solution Outlines 12 / 15

Laser Cutting

Third condition:
For any two polygons, check whether one contains the
other.
To do so, check whether an arbitray boundary point of
the one polygon is in the other polygon.
As polygons do not touch, this is sufficient.
If any polygon is inside two other polygons, the condition
is failed.

To use (in Java):
java.awt.geom.Line2D.linesIntersect

java.awt.geom.Path2D.contains

Jury (GCPC 2014) Solution Outlines 13 / 15

Not a subsequence

Focus on length of shortest non-subsequence
(counting them is done similarly).

Start with DP in O(nk) [n = string len, k = alphabet size]

For every suffix s[i ..n] compute length of shortest
non-subsequence T [i].
Define fa(i + 1) as leftmost occurrence of a in s[i + 1..n]
⇒ Minimize 1 + T [fa(i + 1)] over all possible chars c

Improve to O(n):
Notice that T [fa(i + 1)] is either x or x + 1.
Of course we prefer x (when all are x + 1, increment x).
Keep track of where x ’s are, and how many of them are
still there.
This can be all done in O(1) time per i .

Jury (GCPC 2014) Solution Outlines 14 / 15

Pizza Voting

Bob Bob Bob Alice Alice Alice

Alice will veto last third

Bob will veto first third

You can choose any in the middle third

Rounding at the border of thirds

puts((i > n/3 && i <= n-(n+1)/3) ? "YES" : "NO");

pizza icon by http://www.danilodemarco.com/

Jury (GCPC 2014) Solution Outlines 15 / 15

http://www.danilodemarco.com/

Pizza Voting

Bob Bob Bob Alice Alice Alice

Alice will veto last third

Bob will veto first third

You can choose any in the middle third

Rounding at the border of thirds

puts((i > n/3 && i <= n-(n+1)/3) ? "YES" : "NO");

pizza icon by http://www.danilodemarco.com/

Jury (GCPC 2014) Solution Outlines 15 / 15

http://www.danilodemarco.com/

