Solution Outlines

Jury

GCPC 2014

FRIEDRICH-ALEXANDER ‘6‘)

o5
UNIVERSITAT International Collegiat
ERLANGEN-NURNBERG ACM Frsgramming Contest

Jury (GCPC 2014) Solution Outlines

Algebraic Teamwork

Algebraic problem

Determine the number of non-idempotent permutations
on some finite set.

Jury (GCPC 2014) Solution Outlines 2/15

Algebraic Teamwork

Algebraic problem

Determine the number of non-idempotent permutations
on some finite set.

Intuition: Identity is the only idempotent permutation.

Jury (GCPC 2014) Solution Outlines 2/15

Algebraic Teamwork

Algebraic problem

Determine the number of non-idempotent permutations
on some finite set.

Intuition: Identity is the only idempotent permutation.
Proof. Let f : A —> A be idempotent & bijective:
f(a) bu;tlve f o f o f(a) |dempotent f 1 o f(buectlve .d(a)

Jury (GCPC 2014) Solution Outlines

Algebraic Teamwork

Algebraic problem

Determine the number of non-idempotent permutations
on some finite set.

Intuition: Identity is the only idempotent permutation.
Proof. Let f : A — A be idempotent & bijective:
f(a) "= fLlofof(a) "= f1lof(a) "= id(a)

Solution
For input n, print (n! — 1) mod 10° + 9.

(Substracting 1 without mod worked because of lucky constraints).

o’

Jury (GCPC 2014) Solution Outlines 2/15

Beam me out!

o Evidently, the maze is a directed graph.

e If a cycle is reachable from room 1, you can get
stuck if you are unlucky.

@ Else the number of beaming operations is limited.
@ = Detect cycles with DFS.

Jury (GCPC 2014) Solution Outlines

Beam me out!

Evidently, the maze is a directed graph.

If a cycle is reachable from room 1, you can get
stuck if you are unlucky.

Else the number of beaming operations is limited.
= Detect cycles with DFS.

@ If the graph contains (reachable) dead ends, we
don’t have a warranty that we reach the goal room.

o Else the probability is 100%.
@ = Use DFS on reversed graph.

Jury (GCPC 2014) Solution Outlines

Beam me out!

Evidently, the maze is a directed graph.

If a cycle is reachable from room 1, you can get
stuck if you are unlucky.

Else the number of beaming operations is limited.
= Detect cycles with DFS.

@ If the graph contains (reachable) dead ends, we
don’t have a warranty that we reach the goal room.

Else the probability is 100%.
= Use DFS on reversed graph.

Combine information from both DFS runs.

Jury (GCPC 2014) Solution Outlines

Bounty Hunter

Problem: Traveling Salesman Problem
@ in 2D Euclidean space

@ additional bitonic restriction

Jury (GCPC 2014) Solution Outlines 4/15

Bounty Hunter

Possible Solution

@ partition trip into a left-to-right (LR) and a
right-to-left (RL) path
@ iterate over all places v from left to right
@ put v in the LR path or in the RL path

@ use DP

Jury (GCPC 2014) Solution Outlines

Bounty Hunter

Possible Solution

e DP with state (v, last in LR, first in RL) is in O(n).
@ However v can be computed as max(LR, RL) + 1.
e = O(n?) solution

Jury (GCPC 2014)

Connected Caves

@ Input is a directed acyclic graph (DAG).

Jury (GCPC 2014) Solution Outlines

Connected Caves

@ Input is a directed acyclic graph (DAG).
@ Trying all paths would be exponential.

Jury (GCPC 2014) Solution Outlines

Connected Caves

@ Input is a directed acyclic graph (DAG).
@ Trying all paths would be exponential.

@ However, the sub-result for trying all paths
downwards a specific cave will not change.

Jury (GCPC 2014) Solution Outlines

Connected Caves

@ Input is a directed acyclic graph (DAG).
@ Trying all paths would be exponential.

@ However, the sub-result for trying all paths
downwards a specific cave will not change.

@ = DFS with Memoization

Jury (GCPC 2014) Solution Outlines

Connected Caves

Input is a directed acyclic graph (DAG).

Trying all paths would be exponential.

However, the sub-result for trying all paths
downwards a specific cave will not change.

= DFS with Memoization
= O(N+E)

Jury (GCPC 2014) Solution Outlines

Connected Caves

Input is a directed acyclic graph (DAG).

Trying all paths would be exponential.

However, the sub-result for trying all paths
downwards a specific cave will not change.

= DFS with Memoization
= O(N+E)
@ Alternative solution: topologically sort caves + DP

Jury (GCPC 2014) Solution Outlines

Connected Caves

Input is a directed acyclic graph (DAG).

Trying all paths would be exponential.

However, the sub-result for trying all paths
downwards a specific cave will not change.

= DFS with Memoization

= O(N+E)

Alternative solution: topologically sort caves + DP
= O(N+E)

Jury (GCPC 2014) Solution Outlines

Linear version i.e. without wrapping ~~ DP

o) = {o <0 e ol

¢ + max(0,p(i — 1)) else —1<i<n

Jury (GCPC 2014) Solution Outlines

Linear version i.e. without wrapping ~~ DP

o) = {0 <0 e ol

¢i +max(0, p(i — 1)) else ~1<i<n

With wrapping

@ Optimal solution does not wrap?
~> Can be found by linear version.

@ Optimal solution wraps?
~> Find minimal interval of cities not to rob
(identical DP) and subtract it from total ¢; sum.

Jury (GCPC 2014) Solution Outlines

Gold Rush

@ Math problem of the set

Jury (GCPC 2014)

Gold Rush

@ Math problem of the set

n
@ Consider a = > a;2' in binary notation
i=0

Jury (GCPC 2014) Solution Outlines 9/15

Gold Rush

@ Math problem of the set

n
@ Consider a = > a;2' in binary notation
i=0
@ As a+ b =2" the smallest non-zero index /" must
be identical

Jury (GCPC 2014) Solution Outlines 9/15

Gold Rush

@ Math problem of the set

n
@ Consider a = > a;2' in binary notation
i=0
@ As a+ b =2" the smallest non-zero index /" must
be identical

e Counting downwards from n to i/, the answer is
-/
c=n—1

Jury (GCPC 2014) Solution Outlines 9/15

Gold Rush

@ Math problem of the set

n
@ Consider a = > a;2' in binary notation
i=0
@ As a+ b =2" the smallest non-zero index /" must
be identical

e Counting downwards from n to i/, the answer is
A o/
c:=n—i
@ Running time O(n) with step-by-step bisections of a
until zero.

Jury (GCPC 2014) Solution Outlines 9/15

Jewelry Exhibition

@ Rows and columns form a

4 . 4 4

; ¢ 3%; bipartite graph.

llee o 1 1 e Exhibit at (x, y) represent
1234 an edge {ar., br,1}-

Jury (GCPC 2014) Solution Outlines

Jewelry Exhibition

@ Rows and columns form a

4 . 4 4
g s 3%3 bipartite graph.
1lee o 1 1 e Exhibit at (x, y) represent

1234 an edge {af,, by}

=N WD
[]
[X
°
°
e ©
(]
=N WD
=N WS

@ = Find size of the minimum
1234 vertex cover.

Jury (GCPC 2014) Solution Outlines 10 / 15

Jewelry Exhibition

@ Rows and columns form a

4 . 4 4

; CHi 3%3 bipartite graph.

llee o 1 1 e Exhibit at (x, y) represent
1234 an edge {ar., br,1}-

=N WD
[X
°
e ©
()
=N WD
=N WD

@ = Find size of the minimum
1234 vertex cover.

@ Konig-Egervary Theorem: sizes of minimum vertex
cover and maximum matching are equal in bipartite
graphs.

@ Solution: find maximum matching in O(N?M).

Jury (GCPC 2014) Solution Outlines 10 / 15

e Naive solution requires C - O: ~ 10! operations

Jury (GCPC 2014) Solution Outlines 11 /15

e Naive solution requires C - O: ~ 10! operations
@ Coord compression reduces C to 4 - O: ~ 10%° ops

Jury (GCPC 2014) Solution Outlines 11 /15

Naive solution requires C - O: ~ 10! operations
Coord compression reduces C to 4 - O: ~ 10'° ops
= Advanced data structure necessary

Inner nodes represent intervals

Store minimum, maximum and value in each node

°
°

°

@ Segment tree with lazy propagation

°

°

@ Propagate values only when necessary
°

Answer queries in O(log n)

Jury (GCPC 2014) Solution Outlines 11 /15

Naive solution requires C - O: ~ 10! operations
Coord compression reduces C to 4 - O: ~ 10'° ops
= Advanced data structure necessary

Segment tree with lazy propagation

Store minimum, maximum and value in each node

Propagate values only when necessary

°
°
°
°
@ Inner nodes represent intervals
°
°
@ Answer queries in O(log n)

°

(Even more efficient: combine both ideas)

Jury (GCPC 2014) Solution Outlines 11 /15

e Naive solution requires C - O: ~ 10! operations
@ Coord compression reduces C to 4 - O: ~ 10%° ops
@ = Advanced data structure necessary

@ Segment tree with lazy propagation

@ Inner nodes represent intervals

@ Store minimum, maximum and value in each node
@ Propagate values only when necessary

@ Answer queries in O(log n)

@ (Even more efficient: combine both ideas)

@ Don't use billions of objects in Java — your Garbage
Collector will go crazy!

Jury (GCPC 2014) Solution Outlines 11 /15

@ Basic geometry problem
@ Required algorithms:
@ Intersection of two lines

e Point in polygon
e First condition: Every line of a polyline may only
intersect with the next and the previous line of that
polyline.
@ Second condition: For two different polylines, any
line from the first may not intersect with any line
from the second.

Jury (GCPC 2014) Solution Outlines 12 / 15

@ Third condition:

e For any two polygons, check whether one contains the
other.

e To do so, check whether an arbitray boundary point of
the one polygon is in the other polygon.

@ As polygons do not touch, this is sufficient.

e If any polygon is inside two other polygons, the condition
is failed.

@ To use (in Java):

@ java.awt.geom.Line2D.linesIntersect
@ java.awt.geom.Path2D.contains

Jury (GCPC 2014) Solution Outlines 13 /15

Not a subsequence

@ Focus on length of shortest non-subsequence
(counting them is done similarly).

@ Start with DP in O(nk) [n = string len, k = alphabet size]
e For every suffix s[i..n] compute length of shortest
non-subsequence Ti].
o Define f,(i + 1) as leftmost occurrence of a in s[i + 1..n]
e = Minimize 1+ T[fy(i + 1)] over all possible chars ¢

@ Improve to O(n):

Notice that T[fy(i + 1)] is either x or x + 1.

o Of course we prefer x (when all are x + 1, increment x).
o Keep track of where x's are, and how many of them are
still there.

This can be all done in O(1) time per i.

Jury (GCPC 2014) Solution Outlines 14 / 15

> a2 &P &85 85 85 85 &85
geeeecee

@ Alice will veto last third

@ Bob will veto first third

@ You can choose any in the middle third
@ Rounding at the border of thirds

pizza icon by http://www.danilodemarco.com/

Jury (GCPC 2014)

http://www.danilodemarco.com/

TEGGHEEGG

Bob Bob Bob Alice Alice Alice

@ Alice will veto last third

@ Bob will veto first third

@ You can choose any in the middle third

@ Rounding at the border of thirds

@ puts((i > n/3 && i <= n-(n+1)/3) ? "YES" : "NO");

pizza icon by http://www.danilodemarco.com/

Jury (GCPC 2014) Solution Outlines

http://www.danilodemarco.com/

