
BAPC 2021 Preliminaries
Solutions presentation

October 9, 2021

BAPC 2021 Preliminaries October 9, 2021 1 / 21



D: Dickensian Dictionary
Problem Author: Mees de Vries

Problem: Given a word, decide if it is Dickensian
(i.e., typeable alternatingly with left and right hand)

Solution: Check for every letter whether it is typeable with left or right
Check if the resulting list is alternating

Note that you can start with either left or right

Statistics: 39 submissions, 33 accepted, 5 unknown

BAPC 2021 Preliminaries October 9, 2021 2 / 21



D: Dickensian Dictionary
Problem Author: Mees de Vries

Problem: Given a word, decide if it is Dickensian
(i.e., typeable alternatingly with left and right hand)

Solution: Check for every letter whether it is typeable with left or right

Check if the resulting list is alternating
Note that you can start with either left or right

Statistics: 39 submissions, 33 accepted, 5 unknown

BAPC 2021 Preliminaries October 9, 2021 2 / 21



D: Dickensian Dictionary
Problem Author: Mees de Vries

Problem: Given a word, decide if it is Dickensian
(i.e., typeable alternatingly with left and right hand)

Solution: Check for every letter whether it is typeable with left or right
Check if the resulting list is alternating

Note that you can start with either left or right

Statistics: 39 submissions, 33 accepted, 5 unknown

BAPC 2021 Preliminaries October 9, 2021 2 / 21



F: Fridge Distraction
Problem Author: Robin Lee

Problem: Keep Kevin busy by asking him to take items from his long fridge.
Ask for as little items as possible.

Solution: Keep asking items from the very back of the fridge
Maintaining a rotating list of items will do
For the last item, pick one from the middle, based on the number of seconds left

Optimization: You don’t need to maintain a list if you do some math

Statistics: 68 submissions, 22 accepted, 26 unknown

BAPC 2021 Preliminaries October 9, 2021 3 / 21



F: Fridge Distraction
Problem Author: Robin Lee

Problem: Keep Kevin busy by asking him to take items from his long fridge.
Ask for as little items as possible.

Solution: Keep asking items from the very back of the fridge
Maintaining a rotating list of items will do
For the last item, pick one from the middle, based on the number of seconds left

Optimization: You don’t need to maintain a list if you do some math

Statistics: 68 submissions, 22 accepted, 26 unknown

BAPC 2021 Preliminaries October 9, 2021 3 / 21



F: Fridge Distraction
Problem Author: Robin Lee

Problem: Keep Kevin busy by asking him to take items from his long fridge.
Ask for as little items as possible.

Solution: Keep asking items from the very back of the fridge
Maintaining a rotating list of items will do
For the last item, pick one from the middle, based on the number of seconds left

Optimization: You don’t need to maintain a list if you do some math

Statistics: 68 submissions, 22 accepted, 26 unknown

BAPC 2021 Preliminaries October 9, 2021 3 / 21



B: Buffered Buffet
Problem Author: Boas Kluiving

Problem: What is the minimum circumference of the table such that
everyone can comply with their social distancing requirement?

Solution: Order guests by their required distance,
then you can sum up their distances to get the table circumference.

The guest requiring the smallest distance is always satisfied on both sides,
so this guest should not be counted.
The guest requiring the largest distance, requires this distance on both sides,
so this guest should be counted twice.
All other guests are automatically satisfied on the side where somebody with lesser
requirements is sitting, so they only need to be counted once.

Final answer:
∑

i di + maxi (di )−mini (di )

Statistics: 65 submissions, 21 accepted, 16 unknown

BAPC 2021 Preliminaries October 9, 2021 4 / 21



B: Buffered Buffet
Problem Author: Boas Kluiving

Problem: What is the minimum circumference of the table such that
everyone can comply with their social distancing requirement?

Solution: Order guests by their required distance,
then you can sum up their distances to get the table circumference.

The guest requiring the smallest distance is always satisfied on both sides,
so this guest should not be counted.
The guest requiring the largest distance, requires this distance on both sides,
so this guest should be counted twice.
All other guests are automatically satisfied on the side where somebody with lesser
requirements is sitting, so they only need to be counted once.

Final answer:
∑

i di + maxi (di )−mini (di )

Statistics: 65 submissions, 21 accepted, 16 unknown

BAPC 2021 Preliminaries October 9, 2021 4 / 21



B: Buffered Buffet
Problem Author: Boas Kluiving

Problem: What is the minimum circumference of the table such that
everyone can comply with their social distancing requirement?

Solution: Order guests by their required distance,
then you can sum up their distances to get the table circumference.

The guest requiring the smallest distance is always satisfied on both sides,
so this guest should not be counted.
The guest requiring the largest distance, requires this distance on both sides,
so this guest should be counted twice.
All other guests are automatically satisfied on the side where somebody with lesser
requirements is sitting, so they only need to be counted once.

Final answer:
∑

i di + maxi (di )−mini (di )

Statistics: 65 submissions, 21 accepted, 16 unknown

BAPC 2021 Preliminaries October 9, 2021 4 / 21



B: Buffered Buffet
Problem Author: Boas Kluiving

Problem: What is the minimum circumference of the table such that
everyone can comply with their social distancing requirement?

Solution: Order guests by their required distance,
then you can sum up their distances to get the table circumference.

The guest requiring the smallest distance is always satisfied on both sides,
so this guest should not be counted.
The guest requiring the largest distance, requires this distance on both sides,
so this guest should be counted twice.
All other guests are automatically satisfied on the side where somebody with lesser
requirements is sitting, so they only need to be counted once.

Final answer:
∑

i di + maxi (di )−mini (di )

Statistics: 65 submissions, 21 accepted, 16 unknown

BAPC 2021 Preliminaries October 9, 2021 4 / 21



H: Histogram
Problem Author: Abe Wits

Problem: Print a histogram with the given data.

Solution: First count the size for each bin, then print the histogram.
Make sure to calculate the height of the histogram beforehand

Statistics: 67 submissions, 18 accepted, 40 unknown

BAPC 2021 Preliminaries October 9, 2021 5 / 21



H: Histogram
Problem Author: Abe Wits

Problem: Print a histogram with the given data.
Solution: First count the size for each bin, then print the histogram.

Make sure to calculate the height of the histogram beforehand

Statistics: 67 submissions, 18 accepted, 40 unknown

BAPC 2021 Preliminaries October 9, 2021 5 / 21



I: Ice Growth
Problem Author: Jorke de Vlas

Given a weather report for n days and k people that have a required minimal ice
thickness, how many days can each person skate?

Compute and store the ice thickness for each day.
Ice-thickness can’t be negative.
Use integers to count ‘degrees of frost’.

Sort the days by ice thickness [O(n log(n))].
For each person binary search how many days have the required thickness
[O(k log(n))].
Alternative: store the number of days for each ice-thickness ≤ 106, and
accumulate once [O(k + n)].

Statistics: 106 submissions, 7 accepted, 58 unknown

BAPC 2021 Preliminaries October 9, 2021 6 / 21



I: Ice Growth
Problem Author: Jorke de Vlas

Given a weather report for n days and k people that have a required minimal ice
thickness, how many days can each person skate?
Compute and store the ice thickness for each day.

Ice-thickness can’t be negative.
Use integers to count ‘degrees of frost’.

Sort the days by ice thickness [O(n log(n))].
For each person binary search how many days have the required thickness
[O(k log(n))].
Alternative: store the number of days for each ice-thickness ≤ 106, and
accumulate once [O(k + n)].

Statistics: 106 submissions, 7 accepted, 58 unknown

BAPC 2021 Preliminaries October 9, 2021 6 / 21



I: Ice Growth
Problem Author: Jorke de Vlas

Given a weather report for n days and k people that have a required minimal ice
thickness, how many days can each person skate?
Compute and store the ice thickness for each day.

Ice-thickness can’t be negative.
Use integers to count ‘degrees of frost’.

Sort the days by ice thickness [O(n log(n))].

For each person binary search how many days have the required thickness
[O(k log(n))].
Alternative: store the number of days for each ice-thickness ≤ 106, and
accumulate once [O(k + n)].

Statistics: 106 submissions, 7 accepted, 58 unknown

BAPC 2021 Preliminaries October 9, 2021 6 / 21



I: Ice Growth
Problem Author: Jorke de Vlas

Given a weather report for n days and k people that have a required minimal ice
thickness, how many days can each person skate?
Compute and store the ice thickness for each day.

Ice-thickness can’t be negative.
Use integers to count ‘degrees of frost’.

Sort the days by ice thickness [O(n log(n))].
For each person binary search how many days have the required thickness
[O(k log(n))].

Alternative: store the number of days for each ice-thickness ≤ 106, and
accumulate once [O(k + n)].

Statistics: 106 submissions, 7 accepted, 58 unknown

BAPC 2021 Preliminaries October 9, 2021 6 / 21



I: Ice Growth
Problem Author: Jorke de Vlas

Given a weather report for n days and k people that have a required minimal ice
thickness, how many days can each person skate?
Compute and store the ice thickness for each day.

Ice-thickness can’t be negative.
Use integers to count ‘degrees of frost’.

Sort the days by ice thickness [O(n log(n))].
For each person binary search how many days have the required thickness
[O(k log(n))].
Alternative: store the number of days for each ice-thickness ≤ 106, and
accumulate once [O(k + n)].

Statistics: 106 submissions, 7 accepted, 58 unknown

BAPC 2021 Preliminaries October 9, 2021 6 / 21



C: Candy Contribution
Problem Author: Ruben Brokkelkamp

Problem: Given a graph, nodes s and t, a number of candies c and for each edge
e an integer pe denoting what percentage of the candies you are carrying you have
to pay to use the edge (rounded up).

What is the maximum number of candies you can bring from s to t?
Sample showed that computing path with lowest summed taxed percentage is not
always best: (1− 0.25)(1− 0.1) = 0.675 > 0.672 = (1− 0.04)(1− 0.3).

s
u

v
t

25

4

10

30

So, cannot do a ’normal’ additive dijkstra with tax percentages to find best path.
Solution: Tweak dijkstra a bit. Instead of initializing every node to ∞ and
lowering it everytime you find a shorter path. Initialize everything to 0 and raise it
when you find a path where you hold on to more candies.

Statistics: 57 submissions, 7 accepted, 34 unknown
BAPC 2021 Preliminaries October 9, 2021 7 / 21



C: Candy Contribution
Problem Author: Ruben Brokkelkamp

Problem: Given a graph, nodes s and t, a number of candies c and for each edge
e an integer pe denoting what percentage of the candies you are carrying you have
to pay to use the edge (rounded up).

What is the maximum number of candies you can bring from s to t?

Sample showed that computing path with lowest summed taxed percentage is not
always best: (1− 0.25)(1− 0.1) = 0.675 > 0.672 = (1− 0.04)(1− 0.3).

s
u

v
t

25

4

10

30

So, cannot do a ’normal’ additive dijkstra with tax percentages to find best path.
Solution: Tweak dijkstra a bit. Instead of initializing every node to ∞ and
lowering it everytime you find a shorter path. Initialize everything to 0 and raise it
when you find a path where you hold on to more candies.

Statistics: 57 submissions, 7 accepted, 34 unknown
BAPC 2021 Preliminaries October 9, 2021 7 / 21



C: Candy Contribution
Problem Author: Ruben Brokkelkamp

Problem: Given a graph, nodes s and t, a number of candies c and for each edge
e an integer pe denoting what percentage of the candies you are carrying you have
to pay to use the edge (rounded up).

What is the maximum number of candies you can bring from s to t?
Sample showed that computing path with lowest summed taxed percentage is not
always best: (1− 0.25)(1− 0.1) = 0.675 > 0.672 = (1− 0.04)(1− 0.3).

s
u

v
t

25

4

10

30

So, cannot do a ’normal’ additive dijkstra with tax percentages to find best path.
Solution: Tweak dijkstra a bit. Instead of initializing every node to ∞ and
lowering it everytime you find a shorter path. Initialize everything to 0 and raise it
when you find a path where you hold on to more candies.

Statistics: 57 submissions, 7 accepted, 34 unknown
BAPC 2021 Preliminaries October 9, 2021 7 / 21



C: Candy Contribution
Problem Author: Ruben Brokkelkamp

Problem: Given a graph, nodes s and t, a number of candies c and for each edge
e an integer pe denoting what percentage of the candies you are carrying you have
to pay to use the edge (rounded up).

What is the maximum number of candies you can bring from s to t?
Sample showed that computing path with lowest summed taxed percentage is not
always best: (1− 0.25)(1− 0.1) = 0.675 > 0.672 = (1− 0.04)(1− 0.3).

s
u

v
t

25

4

10

30

So, cannot do a ’normal’ additive dijkstra with tax percentages to find best path.

Solution: Tweak dijkstra a bit. Instead of initializing every node to ∞ and
lowering it everytime you find a shorter path. Initialize everything to 0 and raise it
when you find a path where you hold on to more candies.

Statistics: 57 submissions, 7 accepted, 34 unknown
BAPC 2021 Preliminaries October 9, 2021 7 / 21



C: Candy Contribution
Problem Author: Ruben Brokkelkamp

Problem: Given a graph, nodes s and t, a number of candies c and for each edge
e an integer pe denoting what percentage of the candies you are carrying you have
to pay to use the edge (rounded up).

What is the maximum number of candies you can bring from s to t?
Sample showed that computing path with lowest summed taxed percentage is not
always best: (1− 0.25)(1− 0.1) = 0.675 > 0.672 = (1− 0.04)(1− 0.3).

s
u

v
t

25

4

10

30

So, cannot do a ’normal’ additive dijkstra with tax percentages to find best path.
Solution: Tweak dijkstra a bit. Instead of initializing every node to ∞ and
lowering it everytime you find a shorter path. Initialize everything to 0 and raise it
when you find a path where you hold on to more candies.

Statistics: 57 submissions, 7 accepted, 34 unknown
BAPC 2021 Preliminaries October 9, 2021 7 / 21



G: Git mv
Problem Author: Ragnar Groot Koerkamp

Problem: Given a file movement s1/s2/ . . . /sn → t1/t2/ . . . /tm find the shortest
move description, assuming that the si are distinct and the tj are distinct.

Solution: Greedy, i.e. find smallest i such that si 6= ti and smallest j s.t.
sn−j 6= tm−j . Output:

s1/s2/ . . . /si−1/ {si/ . . . /sn−j =⇒ ti/ . . . /tm−j} /sn−j+1/ . . . /sn.

Statistics: 91 submissions, 2 accepted, 78 unknown

BAPC 2021 Preliminaries October 9, 2021 8 / 21



G: Git mv
Problem Author: Ragnar Groot Koerkamp

Problem: Given a file movement s1/s2/ . . . /sn → t1/t2/ . . . /tm find the shortest
move description, assuming that the si are distinct and the tj are distinct.
Solution: Greedy, i.e. find smallest i such that si 6= ti and smallest j s.t.
sn−j 6= tm−j . Output:

s1/s2/ . . . /si−1/ {si/ . . . /sn−j =⇒ ti/ . . . /tm−j} /sn−j+1/ . . . /sn.

Statistics: 91 submissions, 2 accepted, 78 unknown

BAPC 2021 Preliminaries October 9, 2021 8 / 21



A: Almost Always
Problem Author: Ragnar Groot Koerkamp

Problem: Given n = 5 · 105 integers between 1 and a = 2 · 109, find two such
that one divides the other.

Naive solution: For each pair try whether xi divides xj . O(n2) is too slow.
Early break: stop as soon as you find a good pair. O(a/ ln(a)) ≈ O(108) expected
steps is likely still too slow on the worst of the 100 test cases.

Statistics: 62 submissions, 3 accepted, 44 unknown

BAPC 2021 Preliminaries October 9, 2021 9 / 21



A: Almost Always
Problem Author: Ragnar Groot Koerkamp

Problem: Given n = 5 · 105 integers between 1 and a = 2 · 109, find two such
that one divides the other.
Naive solution: For each pair try whether xi divides xj . O(n2) is too slow.

Early break: stop as soon as you find a good pair. O(a/ ln(a)) ≈ O(108) expected
steps is likely still too slow on the worst of the 100 test cases.

Statistics: 62 submissions, 3 accepted, 44 unknown

BAPC 2021 Preliminaries October 9, 2021 9 / 21



A: Almost Always
Problem Author: Ragnar Groot Koerkamp

Problem: Given n = 5 · 105 integers between 1 and a = 2 · 109, find two such
that one divides the other.
Naive solution: For each pair try whether xi divides xj . O(n2) is too slow.
Early break: stop as soon as you find a good pair. O(a/ ln(a)) ≈ O(108) expected
steps is likely still too slow on the worst of the 100 test cases.

Statistics: 62 submissions, 3 accepted, 44 unknown

BAPC 2021 Preliminaries October 9, 2021 9 / 21



A: Almost Always
Problem Author: Ragnar Groot Koerkamp

Observation: small numbers are more likely to divide another number.

Greedy solution: Sort the input before doing the brute force with early break.
Single pass solution: Keep the index of the smallest number seen so far, and
check whether it divides the current number.
Analysis:
The expected value of the smallest integer is s ≈ a/n = 4000, so likely below
8000.
The probability that none of the n = 5 · 105 integers is a multiple of s ≤ 8000 is
less than 10−27.
If s does not work, we just try the next smallest integer. (But the probability of
needing this is 10−5, so only trying the smallest one is sufficient.)

BAPC 2021 Preliminaries October 9, 2021 10 / 21



A: Almost Always
Problem Author: Ragnar Groot Koerkamp

Observation: small numbers are more likely to divide another number.
Greedy solution: Sort the input before doing the brute force with early break.

Single pass solution: Keep the index of the smallest number seen so far, and
check whether it divides the current number.
Analysis:
The expected value of the smallest integer is s ≈ a/n = 4000, so likely below
8000.
The probability that none of the n = 5 · 105 integers is a multiple of s ≤ 8000 is
less than 10−27.
If s does not work, we just try the next smallest integer. (But the probability of
needing this is 10−5, so only trying the smallest one is sufficient.)

BAPC 2021 Preliminaries October 9, 2021 10 / 21



A: Almost Always
Problem Author: Ragnar Groot Koerkamp

Observation: small numbers are more likely to divide another number.
Greedy solution: Sort the input before doing the brute force with early break.
Single pass solution: Keep the index of the smallest number seen so far, and
check whether it divides the current number.

Analysis:
The expected value of the smallest integer is s ≈ a/n = 4000, so likely below
8000.
The probability that none of the n = 5 · 105 integers is a multiple of s ≤ 8000 is
less than 10−27.
If s does not work, we just try the next smallest integer. (But the probability of
needing this is 10−5, so only trying the smallest one is sufficient.)

BAPC 2021 Preliminaries October 9, 2021 10 / 21



A: Almost Always
Problem Author: Ragnar Groot Koerkamp

Observation: small numbers are more likely to divide another number.
Greedy solution: Sort the input before doing the brute force with early break.
Single pass solution: Keep the index of the smallest number seen so far, and
check whether it divides the current number.
Analysis:
The expected value of the smallest integer is s ≈ a/n = 4000, so likely below
8000.
The probability that none of the n = 5 · 105 integers is a multiple of s ≤ 8000 is
less than 10−27.
If s does not work, we just try the next smallest integer. (But the probability of
needing this is 10−5, so only trying the smallest one is sufficient.)

BAPC 2021 Preliminaries October 9, 2021 10 / 21



A: Almost Always
Problem Author: Ragnar Groot Koerkamp

Bonus solution: Use the birthday paradox.
The probability that all numbers in the list are distinct is only 7 · 10−28, so we can
just find and print the indices of two equal numbers.

BAPC 2021 Preliminaries October 9, 2021 11 / 21



K: Kudzu Kniving
Problem Author: Reinier Schmiermann

Problem: count the number of removed vertices

Challenge: the number of vertices is at most 2106

Observation: the number of removed vertices is 2age

unless some subtree is already removed
Therefore: remember for every vertex how many children are removed

and propagate this value to ancestors
Solution: when removing vertex v with age i , return:

2i − removed[v ] mod 109 + 7

Statistics: 44 submissions, 1 accepted, 42 unknown

BAPC 2021 Preliminaries October 9, 2021 12 / 21



K: Kudzu Kniving
Problem Author: Reinier Schmiermann

Problem: count the number of removed vertices
Challenge: the number of vertices is at most 2106

Observation: the number of removed vertices is 2age

unless some subtree is already removed
Therefore: remember for every vertex how many children are removed

and propagate this value to ancestors
Solution: when removing vertex v with age i , return:

2i − removed[v ] mod 109 + 7

Statistics: 44 submissions, 1 accepted, 42 unknown

BAPC 2021 Preliminaries October 9, 2021 12 / 21



K: Kudzu Kniving
Problem Author: Reinier Schmiermann

Problem: count the number of removed vertices
Challenge: the number of vertices is at most 2106

Observation: the number of removed vertices is 2age

unless some subtree is already removed

Therefore: remember for every vertex how many children are removed
and propagate this value to ancestors

Solution: when removing vertex v with age i , return:

2i − removed[v ] mod 109 + 7

Statistics: 44 submissions, 1 accepted, 42 unknown

BAPC 2021 Preliminaries October 9, 2021 12 / 21



K: Kudzu Kniving
Problem Author: Reinier Schmiermann

Problem: count the number of removed vertices
Challenge: the number of vertices is at most 2106

Observation: the number of removed vertices is 2age

unless some subtree is already removed
Therefore: remember for every vertex how many children are removed

and propagate this value to ancestors

Solution: when removing vertex v with age i , return:

2i − removed[v ] mod 109 + 7

Statistics: 44 submissions, 1 accepted, 42 unknown

BAPC 2021 Preliminaries October 9, 2021 12 / 21



K: Kudzu Kniving
Problem Author: Reinier Schmiermann

Problem: count the number of removed vertices
Challenge: the number of vertices is at most 2106

Observation: the number of removed vertices is 2age

unless some subtree is already removed
Therefore: remember for every vertex how many children are removed

and propagate this value to ancestors
Solution: when removing vertex v with age i , return:

2i − removed[v ] mod 109 + 7

Statistics: 44 submissions, 1 accepted, 42 unknown

BAPC 2021 Preliminaries October 9, 2021 12 / 21



K: Kudzu Kniving
Problem Author: Reinier Schmiermann

Problem: count the number of removed vertices
Solution: remember for every vertex how many children are removed

0

1

3

7

5

2

6

4

8

4 2

2

1

1 1

1

BAPC 2021 Preliminaries October 9, 2021 13 / 21



K: Kudzu Kniving
Problem Author: Reinier Schmiermann

Problem: count the number of removed vertices
Solution: remember for every vertex how many children are removed

0

1

3

7

5

2

6

4

8 -1

4 2

2

1

1 1

1

BAPC 2021 Preliminaries October 9, 2021 13 / 21



K: Kudzu Kniving
Problem Author: Reinier Schmiermann

Problem: count the number of removed vertices
Solution: remember for every vertex how many children are removed

0

1

3

7

5

2

6

4

8 -3

4 -2 2

2

1

1 1

1

BAPC 2021 Preliminaries October 9, 2021 13 / 21



K: Kudzu Kniving
Problem Author: Reinier Schmiermann

Problem: count the number of removed vertices
Solution: remember for every vertex how many children are removed

0

1

3

7

5

2

6

4

8 -5

4 -2 2

2

1

1 1

1

BAPC 2021 Preliminaries October 9, 2021 13 / 21



J: Jack the Mole
Problem Author: Pim Spelier

Problem: Given n integers between 1 and 1000, find which of them can be
removed such that the remainder can be partitioned into two sets of equal sum.

Define s := n · w to be the sum of the integers.
O(n2 · s) = O(n3 · w) solution: For each mole run a O(n · s) knapsack to check if
a partitioning is possible.
This is usually too slow, unless using bitsets in C++.
O(n2 · w) solution:

For each prefix of moles, compute all possible weights of a subset in O(n · s).
For each suffix of moles, compute all possible weights of a subset in O(n · s).
Mole i can be left out if it is possible to make a subset of size l with the moles
before i , and a subset of size (s − wi )/2− l of the moles after i , for some l .

Statistics: 27 submissions, 3 accepted, 23 unknown

BAPC 2021 Preliminaries October 9, 2021 14 / 21



J: Jack the Mole
Problem Author: Pim Spelier

Problem: Given n integers between 1 and 1000, find which of them can be
removed such that the remainder can be partitioned into two sets of equal sum.
Define s := n · w to be the sum of the integers.

O(n2 · s) = O(n3 · w) solution: For each mole run a O(n · s) knapsack to check if
a partitioning is possible.
This is usually too slow, unless using bitsets in C++.
O(n2 · w) solution:

For each prefix of moles, compute all possible weights of a subset in O(n · s).
For each suffix of moles, compute all possible weights of a subset in O(n · s).
Mole i can be left out if it is possible to make a subset of size l with the moles
before i , and a subset of size (s − wi )/2− l of the moles after i , for some l .

Statistics: 27 submissions, 3 accepted, 23 unknown

BAPC 2021 Preliminaries October 9, 2021 14 / 21



J: Jack the Mole
Problem Author: Pim Spelier

Problem: Given n integers between 1 and 1000, find which of them can be
removed such that the remainder can be partitioned into two sets of equal sum.
Define s := n · w to be the sum of the integers.
O(n2 · s) = O(n3 · w) solution: For each mole run a O(n · s) knapsack to check if
a partitioning is possible.
This is usually too slow, unless using bitsets in C++.

O(n2 · w) solution:
For each prefix of moles, compute all possible weights of a subset in O(n · s).
For each suffix of moles, compute all possible weights of a subset in O(n · s).
Mole i can be left out if it is possible to make a subset of size l with the moles
before i , and a subset of size (s − wi )/2− l of the moles after i , for some l .

Statistics: 27 submissions, 3 accepted, 23 unknown

BAPC 2021 Preliminaries October 9, 2021 14 / 21



J: Jack the Mole
Problem Author: Pim Spelier

Problem: Given n integers between 1 and 1000, find which of them can be
removed such that the remainder can be partitioned into two sets of equal sum.
Define s := n · w to be the sum of the integers.
O(n2 · s) = O(n3 · w) solution: For each mole run a O(n · s) knapsack to check if
a partitioning is possible.
This is usually too slow, unless using bitsets in C++.
O(n2 · w) solution:

For each prefix of moles, compute all possible weights of a subset in O(n · s).
For each suffix of moles, compute all possible weights of a subset in O(n · s).
Mole i can be left out if it is possible to make a subset of size l with the moles
before i , and a subset of size (s − wi )/2− l of the moles after i , for some l .

Statistics: 27 submissions, 3 accepted, 23 unknown

BAPC 2021 Preliminaries October 9, 2021 14 / 21



E: Entering Enemy Encamp-
ment
Problem Author: Reinier Schmiermann

Problem: Two players take turns claiming vertices of a graph and get a point
every time they claim a vertex adjacent to an enemy vertex. Who wins?

Observation: The exact scores of the players do not matter, only their difference
does.
Idea: Use DP to find the score difference in remainder of the game, for every
game state, assuming optimal play.
Issue: O(3n/

√
n) game states, too many!

Statistics: 20 submissions, 0 accepted, 20 unknown

BAPC 2021 Preliminaries October 9, 2021 15 / 21



E: Entering Enemy Encamp-
ment
Problem Author: Reinier Schmiermann

Problem: Two players take turns claiming vertices of a graph and get a point
every time they claim a vertex adjacent to an enemy vertex. Who wins?
Observation: The exact scores of the players do not matter, only their difference
does.

Idea: Use DP to find the score difference in remainder of the game, for every
game state, assuming optimal play.
Issue: O(3n/

√
n) game states, too many!

Statistics: 20 submissions, 0 accepted, 20 unknown

BAPC 2021 Preliminaries October 9, 2021 15 / 21



E: Entering Enemy Encamp-
ment
Problem Author: Reinier Schmiermann

Problem: Two players take turns claiming vertices of a graph and get a point
every time they claim a vertex adjacent to an enemy vertex. Who wins?
Observation: The exact scores of the players do not matter, only their difference
does.
Idea: Use DP to find the score difference in remainder of the game, for every
game state, assuming optimal play.

Issue: O(3n/
√

n) game states, too many!

Statistics: 20 submissions, 0 accepted, 20 unknown

BAPC 2021 Preliminaries October 9, 2021 15 / 21



E: Entering Enemy Encamp-
ment
Problem Author: Reinier Schmiermann

Problem: Two players take turns claiming vertices of a graph and get a point
every time they claim a vertex adjacent to an enemy vertex. Who wins?
Observation: The exact scores of the players do not matter, only their difference
does.
Idea: Use DP to find the score difference in remainder of the game, for every
game state, assuming optimal play.
Issue: O(3n/

√
n) game states, too many!

Statistics: 20 submissions, 0 accepted, 20 unknown

BAPC 2021 Preliminaries October 9, 2021 15 / 21



E: Entering Enemy Encamp-
ment
Problem Author: Reinier Schmiermann

Problem: Two players take turns claiming vertices of a graph and get a point
every time they claim a vertex adjacent to an enemy vertex. Who wins?
Consider an alternative game, where after claiming a vertex:

you lose 1
2 point for every unclaimed adjacent vertex

you get 1
2 point for every claimed adjacent vertex

Results in the same score difference as the original game.
Vertices are either “claimed” or “unclaimed”, so only O(2n) game states.
Using a subset DP: O(2n · n2) time needed.

BAPC 2021 Preliminaries October 9, 2021 16 / 21



E: Entering Enemy Encamp-
ment
Problem Author: Reinier Schmiermann

Problem: Two players take turns claiming vertices of a graph and get a point
every time they claim a vertex adjacent to an enemy vertex. Who wins?
Consider an alternative game, where after claiming a vertex:

you lose 1
2 point for every unclaimed adjacent vertex

you get 1
2 point for every claimed adjacent vertex

Results in the same score difference as the original game.
Vertices are either “claimed” or “unclaimed”, so only O(2n) game states.
Using a subset DP: O(2n · n2) time needed.

BAPC 2021 Preliminaries October 9, 2021 16 / 21



E: Entering Enemy Encamp-
ment
Problem Author: Reinier Schmiermann

Problem: Two players take turns claiming vertices of a graph and get a point
every time they claim a vertex adjacent to an enemy vertex. Who wins?
Consider an alternative game, where after claiming a vertex:

you lose 1
2 point for every unclaimed adjacent vertex

you get 1
2 point for every claimed adjacent vertex

Results in the same score difference as the original game.
Vertices are either “claimed” or “unclaimed”, so only O(2n) game states.
Using a subset DP: O(2n · n2) time needed.

BAPC 2021 Preliminaries October 9, 2021 16 / 21



E: Entering Enemy Encamp-
ment
Problem Author: Reinier Schmiermann

Problem: Two players take turns claiming vertices of a graph and get a point
every time they claim a vertex adjacent to an enemy vertex. Who wins?
Consider an alternative game, where after claiming a vertex:

you lose 1
2 point for every unclaimed adjacent vertex

you get 1
2 point for every claimed adjacent vertex

Results in the same score difference as the original game.

Vertices are either “claimed” or “unclaimed”, so only O(2n) game states.
Using a subset DP: O(2n · n2) time needed.

BAPC 2021 Preliminaries October 9, 2021 16 / 21



E: Entering Enemy Encamp-
ment
Problem Author: Reinier Schmiermann

Problem: Two players take turns claiming vertices of a graph and get a point
every time they claim a vertex adjacent to an enemy vertex. Who wins?
Consider an alternative game, where after claiming a vertex:

you lose 1
2 point for every unclaimed adjacent vertex

you get 1
2 point for every claimed adjacent vertex

Results in the same score difference as the original game.
Vertices are either “claimed” or “unclaimed”, so only O(2n) game states.

Using a subset DP: O(2n · n2) time needed.

BAPC 2021 Preliminaries October 9, 2021 16 / 21



E: Entering Enemy Encamp-
ment
Problem Author: Reinier Schmiermann

Problem: Two players take turns claiming vertices of a graph and get a point
every time they claim a vertex adjacent to an enemy vertex. Who wins?
Consider an alternative game, where after claiming a vertex:

you lose 1
2 point for every unclaimed adjacent vertex

you get 1
2 point for every claimed adjacent vertex

Results in the same score difference as the original game.
Vertices are either “claimed” or “unclaimed”, so only O(2n) game states.
Using a subset DP: O(2n · n2) time needed.

BAPC 2021 Preliminaries October 9, 2021 16 / 21



Language stats

c cpp java kotlin python3
0

100

200 Accepted
Wrong Answer
Time Limit
Runtime Error
Pending

BAPC 2021 Preliminaries October 9, 2021 17 / 21



Some stats

347 commits (last year: 527)
437 secret testcases (last year: 360)
175 jury solutions (last year: 221)
The minimum number of lines the jury needed to solve all problems is

2 + 2 + 10 + 2 + 20 + 3 + 4 + 4 + 9 + 16 + 10 = 82

On average 7.5 lines per problem, down from 13.9 last year

BAPC 2021 Preliminaries October 9, 2021 18 / 21



Some tips

Read the output specification carefully!
Don’t forget to remove debug prints!
When integers get large, use 64-bit!
Do not do string concatenation with “+” in a loop!
Calling functions is more expensive than you might think!

BAPC 2021 Preliminaries October 9, 2021 19 / 21



Thanks to the Proofreaders!

Abe Wits
Nicky Gerritsen
Jaap Eldering
Mark van Helvoort
Kevin Verbeek

BAPC 2021 Preliminaries October 9, 2021 20 / 21



The Jury

Boas Kluiving
Erik Baalhuis
Freek Henstra
Harry Smit
Joey Haas
Jorke de Vlas
Ludo Pulles
Maarten Sijm
Mees de Vries
Ragnar Groot Koerkamp
Reinier Schmiermann
Robin Lee
Ruben Brokkelkamp
Timon Knigge
Wessel van Woerden

BAPC 2021 Preliminaries October 9, 2021 21 / 21


