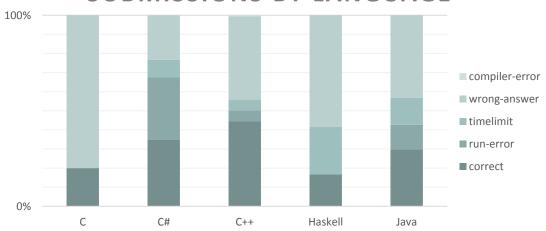
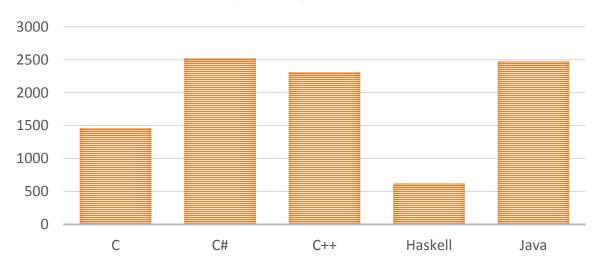

BAPC 2013

STATS + SOLUTIONS + SCORES


SUBMISSIONS OVER TIME


SUBMISSIONS BY LANGUAGE

AVERAGE CODE LENGTH

Solutions

Flying Safely

Minimum spanning tree with weight 1 for each edge

Tree of n nodes has n-1 edges

Forget the spanning tree and output n-1

0(1)

 \circ + O(m) to read input

Incognito

Group attributes per category

Hashmap

Possibilities for each category

- No item
- Exactly 1 item

For n items: n + 1 possibilities

Use multiplication

Subtract 1 for the no disguise

O(n)

Administrative Difficulties

Just do the bookkeeping

Maybe using a hashmap

Don't do it wrong

 \circ [42000000,01] = 42000001

$$O(n+m)$$

– team "Royals"

Destination Unknown

Run **Dijkstra's** from s, f and g

Check 'triangle equality' for each destination i

$$d(s,f) + d(f,g) + d(g,i) = d(s,i)$$
 or

$$\circ d(s,g) + d(g,f) + d(f,i) = d(s,i)$$

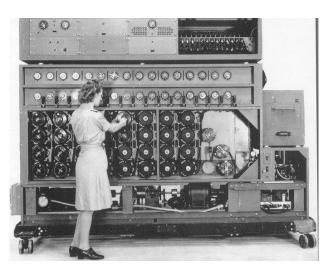
More ideas

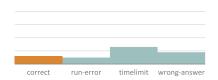
- Keep extra state "seen (f, g)" in your Dijkstra's
- Double all weights (carefully), subtract 1 from (f, g), is distance odd?
- \circ Use Dijkstra's from s to make a shortest-path-DAG and do a BFS from (f,g)

 $O(n^2)$

Cracking the Code

Check for each encrypted message if it could match


- Walk through the string
 - If you've seen a letter before, it should map to the same letter
- Check both decoded to encrypted and encrypted to decoded
- If it matches, save the matching of the letters


Print "?" when there is not exactly 1 matching for this letter

Don't forget

When 25 letters are known, so is the 26th!

O(size of input)

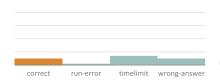
Jailbreak

There must be a 'splitting' point

 Where paths converge from outside, prisoner 1 and prisoner 2

Three **BFS**'s

From outside, prisoner 1 and prisoner 2


Splitting point has minimum sum of these three distances

Careful

Splitting point might be a door

$$O(h * w)$$

Bribe

Memoization / dynamic-programming

Calculate probability of success, for each

- Amount of henchmen already converted
- Subset of henchmen already asked
 - Could use a bitmask

Money spent can be deduced from that subset Answer is probability with 0 converted, \emptyset already asked $O(2^n*n^2)$

Getting Through

Binary search over radius

Check if radius r is possible

- Extend all circles with *r*
- $^{\circ}$ Move walls by r

Possible iff no path from left to right wall via overlapping circles

$$O(\log 10^{5--6} * n^2)$$

Or use a minimum spanning tree $O(n^2)$

Hidden Camera

Trick

- Move camera to origin
- Rotate such that base wall is on x-axis
- Construct boundary lines and find intersection points

Calculate both areas

Look in your cheat sheet...

Careful with floating points, small rounding errors can lead to finding no intersection point at all

Encoded Coordinates

Introduce new name for H(n-1)

$$\circ I(n+1) = H(n)$$

Looks like a matrix multiplication right?

$$\begin{pmatrix}
F(n+1) \\
G(n+1) \\
H(n+1)
\end{pmatrix} = \begin{pmatrix}
0 & 1 & 1 & 0 \\
K & 0 & 0 & 1 \\
1 & K & 0 & 0 \\
0 & 0 & 1 & 0
\end{pmatrix} \begin{pmatrix}
F(n) \\
G(n) \\
H(n) \\
I(n)
\end{pmatrix}$$

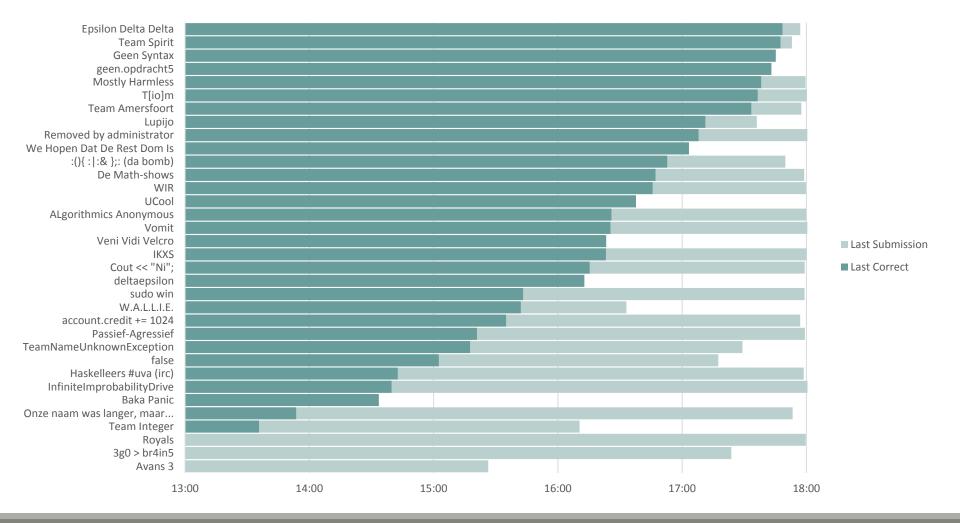
$$\boldsymbol{v}_{n+1} = A \boldsymbol{v}_n \quad \Rightarrow \quad \boldsymbol{v}_N = A^{N-1} \boldsymbol{v}_1$$

Find H(0) with x and use **matrix exponentiation** to find N^{th} element

$$O(\log N + P)$$

Can you do it in $O(\log N + \log P)$?

Scores


Scoreboard BAPC 2013

final standings

#	AFFIL.	TEAM	SCORE		ΑО	в●	c 🛑	D O	E O	F 🔵	G 🔵	н 🔵	ı O	J 🔾
₩1		Geen Syntax	10	1331	2 (80 + 20)	1 (130 + 0)	2 (69 + 20)	1 (95 + 0)	1 (172 + 0)	1 (12 + 0)	4 (244 + 60)	3 (226 + 40)	1 (7 + 0)	2 (136 + 20)
₩2	<u> </u>	geen.opdracht5	10	1654	3 (116 + 40)	1 (206 + 0)	3 (195 + 40)	1 (31 + 0)	1 (238 + 0)	1 (18 + 0)	2 (257 + 20)	4 (283 + 60)	1 (16 + 0)	1 (134 + 0)
₩3	•	ALgorithmics Anonymous	6	635	1 (42 + 0)	1 (205 + 0)	1 (143 + 0)	3 (187 + 40)	0	1 (6 + 0)	19	0	1 (12 + 0)	4
₩4		UCool	6	845	1 (93 + 0)	0	3 (209 + 40)	2 (217 + 20)	1 (196 + 0)	1 (44 + 0)	0	0	1 (26 + 0)	0
₩5	 }	Mostly Harmless	6	976	1 (113 + 0)	2	2 (151 + 20)	7 (230 + 120)	0	1 (15 + 0)	0	0	1 (9 + 0)	3 (278 + 40)
¥ 6	•	sudo win	5	574	5 (152 + 80)	0	1	1 (49 + 0)	0	1 (19 + 0)	6 (163 + 100)	5	1 (11 + 0)	0
₩7	9	Epsilon Delta Delta	5	592	1 (133 + 0)	0	4	1 (90 + 0)	3 (288 + 40)	1 (23 + 0)	4	0	1 (18 + 0)	0
₩8	<u> </u>	We Hopen Dat De Rest Dom Is	5	685	1 (127 + 0)	0	4 (213 + 60)	1 (243 + 0)	0	1 (30 + 0)	0	0	1 (12 + 0)	0
₩9	%	Cout << "Ni";	4	421	2 (159 + 20)	1	2	1 (195 + 0)	0	1 (28 + 0)	0	0	1 (19 + 0)	0
₩10	TU/e	Vomit	4	459	5 (205 + 80)	1	4	1 (154 + 0)	0	1 (8 + 0)	0	2	1 (12 + 0)	0
¥11		WIR	4	462	3 (225 + 40)	4	3	5	0	1 (30 + 0)	0	2 (124 + 20)	1 (23 + 0)	0
¥12		Team Amersfoort	4	490	1 (120 + 0)	0	3 (273 + 40)	7	0	1 (26 + 0)	0	0	1 (31 + 0)	0
₩ 13	<u> </u>	Veni Vidi Velcro	4	675	1 (118 + 0)	0	3 (203 + 40)	0	0	1 (184 + 0)	0	0	1 (130 + 0)	0
¥14		Onze naam was langer, maar	3	86	1 (53 + 0)	1	1	2	0	1 (10 + 0)	0	3	1 (23 + 0)	0
¥ 15	TU/e	Removed by administrator	3	294	5	0	2	1 (247 + 0)	0	1 (20 + 0)	0	0	1 (27 + 0)	0

• • •

WHEN YOU COULD'VE GONE HOME...

We had fun:)
We hope you did too.
Let us know what you think.

See you next year! And we hope you agree...

