ACM International Collegiate
Programming Contest 2001-2002

Sponsored by IBM

Northwestern Europe Regional Contest

Supported by MERCK KGaA

Darmstadt University of Technology
Germany

November 4, 2001

PROBLEM SET

This problem set should contain 9 (nine) problems on 22 (twenty-two) numbered pages. Please inform
a runner immediately if something is missing from your problem set.

NWERC 2001, Darmstadt, Germany

ACM International Collegiate Programming Contest
2001-2002
Northwestern Europe Regional Contest (NWERC)

TU Darmstadt, Germany
November 4, 2001

Contents

1 Area 2
2 Ambiguous Dates 4
3 Cog-Wheels 6
4 Cube 8
5 Enigma 10
6 Gridland 14
7 T9 15
8 Number Game 18
9 Signal Box 20

General Remark

e All programs read their input froratdin ~ and output testdout (no files allowed).stderr can
be used for test outputs. You can rely on correct input specifications (no error handling code on input
required).

e Problem 3Cog-Wheelsvas withdrawn 29 minuts after the contest was started because it was already
used by theMid-Central European Regional Contest 2000

Have fun!

NWERC 2001, Darmstadt, Germany

1 Area

Background

Being well known for its highly innovative products, Merck would definitely be a good target for industrial
espionage. To protect its brand-new research and development facility the company has installed the latest
system of surveillance robots patrolling the area. These robots move along the walls of the facility and
report suspicious observations to the central security office. The only flaw in the system a competitor’s
agent could find is the fact that the robots radio their movements unencrypted. Not being able to find out
more, the agent wants to use that information to calculate the exact size of the area occupied by the new
facility. It is public knowledge that all the corners of the building are situated on a rectangular grid and that
only straight walls are used. Figure 1 shows the course of a robot around an example area.

Figure 1: Example area.

Problem

You are hired to write a program that calculates the area occupied by the new facility from the movements
of a robot along its walls. You can assume that this area is a polygon with corners on a rectangular grid.
However, your boss insists that you use a formula he is so proud to have found somewhere. The formula
relates the numbelr of grid points inside the polygon, the numbkgrof grid points on the edges, and the

total aread of the polygon. Unfortunately, you have lost the sheet on which he had written down that simple
formula for you, so your first task is to find the formula yourself.

Input

The first line contains the number of scenarios.

For each scenario, you are given the numher3 < m < 100, of movements of the robot in the
first line. The followingm lines contain pairsdx dy " of integers, separated by a single blank, satisfying
—100 < dx,dy < 100 and(dx,dy) # (0,0). Such a pair means that the robot moves on to a grid point
dz units to the right andy units upwards on the grid (with respect to the current position).

You can assume that the curve along which the robot moves is closed and that it does not intersect or
even touch itself except for the start and end points. The robot moves anti-clockwise around the building,

NWERC 2001, Darmstadt, Germany

so the area to be calculated lies to the left of the curve. Itis known in advance that the whole polygon would
fit into a square on the grid with a side length of 100 units.

Output

The output for every scenario begins with a line containiBgéenario #i: ", wherei is the number

of the scenario starting at 1. Then print a single line contaiding, and A, the areaA rounded to one

digit after the decimal point. Separate the three numbers by two single blanks. Terminate the output for the
scenario with a blank line.

Sample Input

H(J'I\IO}'_\OI—‘-bI\)
wo Lo

N

& ©
AN ANE N

o
1

Sample Output

Scenario #1:
0410

Scenario #2:
12 16 19.0

NWERC 2001, Darmstadt, Germany

2 Ambiguous Dates

Background

More than 200 companies in more than 50 countries all over the world contribute towards the success of
the Merck Group You can imagine that every dayerck Group Headquarterat Darmstadt gets loads of

mail from all over the world, the layout of all the letters following the customary style of their origin. In
particular, the representation of a date is often ambiguous if you do not know in what order day, month, and
year are given.

For example, if you rea@1-02-03 , you do not know if that represents the first of February 1903, or
2003, or if it is the third of February 1901, or 2001. It might even be the second of March 2001, or some
other permutation of the three numbers. Instead of the hyphens, there could also be slashes, backslashes,
dots, commas, or no delimiters at all.

Problem

You are hired to write a program that converts dates given in an unknown format to the format of the
Adjusted Calender of Merck (ACMJhe latter specifies the number of days relative to November 4, 2001,
an important day itMercKs history.

Input

The first line contains the number of scenarios.

Every scenario contains a single date on a line by itself. A date consists of three parts: A day, a month,
and a year given in any order, separated either by exactly two identical delimiters, or not separated by
delimiters at all. Delimiters can be slashés, backslashes\"”, hyphens * ”, dots “. ”, or commas | ”.

The day and month are represented by a single digit, or by two digits, the first of which can be a leading
zero. Valid years are in the rang&00. . .2299; either all four digits are given, or just the last two that
specify the year relative to the century. In the latter case, a leading zero may be omitted.

Dates are considered illegal if no valid interpretation exists. More precisely, a date is illegal if no
classification of the digits as day, month, and year results in a valid date in the range January 1, 1700,
to December 31, 2299. However, you can be sure that all dates given contain 3 to 8 digits, and no other
characters except for maybe the two delimiters.

Remember that February 29 is a valid date for leap-years only. A year is a leap-year if and only if either
its number is divisible by four, but not by one hundred, or if its number is divisible by four hundred. So, in
particular, 2000 is a leap-year, while 1700, 1800, 1900, 2100, or 2200 are not.

Output

The output for every scenario begins with a line containi8genario #i: ", wherei is the number of
the scenario starting at 1.

For every scenario, print all possible interpretations of the given date in the format éidjbsted
Calender of Merck (ACM)each interpretation in a single line, in ascending order and with duplicates
removed. If no valid interpretation exists, print a line containitegal date instead.

Terminate the output for each scenario with a single blank line.

Sample Input

3
1631/02/29
2001-11-03
010203

NWERC 2001, Darmstadt, Germany

Sample Output

Scenario #1:
lllegal date

Scenario #2:
-238
-1

Scenario #3:
-109847
-109820
-109513
-109456
-109149
-109119
-73323
-73296
-72989
-72932
-72625
-72595
-36799
-36772
-36465
-36408
-36101
-36071
-274
-247

60

117
424
454
36250
36277
36584
36641
36948
36978
72774
72801
73108
73165
73472
73502

NWERC 2001, Darmstadt, Germany

3 Cog-Wheels

Background

Your little sister has got a new mechanical building kit, which includes many cog-wheels of different sizes.
She starts building gears with different ratios, but soon she notices that there are some ratios which are quite
difficult to realize, and some others she cannot realize at all. She would like to have a computer program
that tells her what ratios can be realized and what ratios cannot. She asks you to write a program that does
the job.

For example, let us assume that the kit contains cog-wheels with 6, 12, and 30 cogs. Your sister wants
to realize a gear of ratid : 4. One possible solution is shown in Figure 2.

Figure 2: Combination of cog-wheels realizing a geas ofl.

It depicts a complete gear of ratio: 4. Four wheels are used: cog-wheels of sizes 30 and 12 on the
first axis, cog-wheels of sizes 6 and 12 on the second axis. The gear ratio is given by

30 6 5 1 5

21222 1 0%

as desired. However, a gear of ratio 6 cannot be realized using the cog-wheels your sister has.

Problem

Given the sizes of the cog-wheels in the kit (i.e. the number of cogs they have), decide whether a given gear
ratio can be built or not. You may use any finite number of cog-wheels of each size available.

Input

The input begins with a line containing the number of scenarios.

The input for each scenario starts with a description of the cog-wheels in the kit. First, there is a
line containing the numbet of different sizes of cog-wheeld (< n < 20). The next line containg
numbers:; ... ¢, separated by single blanks. These denote:tddferent sizes of the cog-wheels in the
kit, with 5 < ¢; < 100 for ¢ = 1,...,n. You may assume that there is a cog-wheel of smallest size
¢ = min{ecy, ..., ¢, } in the kit such that all sizes,, . . ., ¢,, are multiples ot.

The line describing the available cog-wheels is followed by the list of gear ratios to be realized. It starts
with a line containing the numbet of ratios. The nexin lines each contain two integetsandb, separated
by a single blank. They denote the ratio b, with 1 < a, b < 10000.

NWERC 2001, Darmstadt, Germany

Output

The output for every scenario begins with a line containi8genario #i: 7, wherei is the number of
the scenario starting at 1. Then print the results for all the gear ratios given in that scenario. For each gear
ratioa : b, print a line containing either
Gear ratio a:b can be realized.
or
Gear ratio a:b cannot be realized.
Terminate the output of each scenario with a blank line.

Sample Input

2
3
6 12 30
4
6

2

NDEPEFRLOIN

13 13
42 1

Sample Output

Scenario #1:
Gear ratio 5:4 can be realized.
Gear ratio 1:6 cannot be realized.

Scenario #2:
Gear ratio 13:13 can be realized.
Gear ratio 42:1 cannot be realized.

NWERC 2001, Darmstadt, Germany

4 Cube

Background

After many years of development, Merck has finally discovered a simple model which helps with computer
aided drug design. Different chemical substances are viewed as two-dimensional “puzzle” pieces which
may be combined in a three-dimensional way, forming more complex structures of atoms. Special com-
binations of these pieces have very special chemical properties. These combinations which are known as
ACM (Anachronistic Cube Moleculesesult from combining six individual puzzle pieces along their edges

to form a complete cube (see Figure 3).

[| | -
o]

- —

Figure 3: Construction of a cube.

Problem

Given six pieces, decide whether they can be put together to form a cube of diménsi®x 6, with no

holes visible from the outside. Each piece can be thought of as being cut from a plate of wood of dimension
6 x 6 x 1, with the4 x 4 x 1 plate in the centre untouched. A piece can be used the one or the other way
around, i.e., there is no distinction between the inside and the outside.

Input

The first line contains the number of scenarios.

In each scenario, you are first given six lines with a graphical representation of the six pieces. In that
representation,X” symbolises solid wood, a dot * stands for al x 1 x 1 piece of wood that was cut out.
A column with " " stands on the right of each piece to separate them from each other. There is a blank line
following every scenario.

It is not necessary that the pieces can really be cut out of wood or that they form a stable cube, as you
can see in the sample input, second example.

Output

The output for every scenario begins with a line containi8genario #i: ", wherei is the number of
the scenario starting at 1. In the next line priles” or “No” depending on whether the given pieces can
be put together to form a cube. Terminate the output for the scenario with a blank line.

NWERC 2001, Darmstadt, Germany

Sample Input
3

XXXXXXE XXX IXXX XXX XX XXX XXX XXXX
SKXXXIXXXXXXE XXX XX XXX XXX XXX X!
SKXXXIXXXXXXE XXX XXX XXX XX X!
XXXXXXEXXXXIXXXXXKE XXX XL X XXX XXXX

XXX XXXXL XX XK XXXXIXXXXXXIEX.... XD

XXXXXXE XXX IXXXXX XL XXX XXX XXX X!
XXXXXXEXXXXIXXXXXXE X XXX XXX XXX X!
XXXXXXEXXXXIXXXXXXE X XXX XXX XXX X!
XXXXXXEXXXXIXXXXXXE X XXX XXX XXX X!

XXX XXX XXXX X XXX X XXX XXX !
XXX XXX XXXX X XXX XXX XXX !
XXX XXXXL XXX XXX XXX XXX
XXX XXXXL XXX XXX XXX XXX

Sample Output

Scenario #1:
Yes

Scenario #2:
Yes

Scenario #3:
No

NWERC 2001, Darmstadt, Germany

5 Enigma

Background

During the Second World War, the German military forces mainly used one special machine to secure their
communication: thé&nigma(see Figure 4). Breaking the Enigma cipher is one of the main success stories
of Allied cryptanalysis and the triumph was mainly attributed to the emergence of digital computation and
the genius of the people working at Bletchley Park, the secret cryptanalysis headquarters in England. The
reason for this is that, while Enigma is certainly secure against pen and paper attacks, it is quite easily
breakable using digital computers.

Figure 4: An Enigma machine (picture sourbtp://www.nsa.gov/museum/enigma.html).

The Enigma was a rotor machine, a cipher method which was popular at that time. A rotor is an insulated
disk on which electrical contacts, one for each letter of the alphabet, are placed uniformly around the
periphery and on each side. An internal conduction path through the insulating material connects contacts
in pairs, one on each side of the disk. An electric current entering on one side travels on an internal path
through the rotor cross-section, emerging at one of the contacts on the other side (see Figure 5 for a 3D
visualisation of two rotors). Figure 6 shows a schematic side view of the complete rotor system. It shows
that the Enigma has three rotorg, 7 andms plus an additional reflecting rotaiy.

10

NWERC 2001, Darmstadt, Germany

a - nn
- ™ ’ \
~ <~/ 1
W w //\, 'I
1 .
—_ : rotation
,": \ axis
eely, ‘wLcc
/’ I\ \l
| - - -- -/
X X tt

o 1 2 TR

Figure 6: Side view of the Enigma’s rotor system.

The input to Enigma is a stream of alphabetic characters without blanks. Every character is subject to
the following steps:

1. The plaintext is subject to an initial permutatibR which is implemented by plugboard
2. The character resulting from step 1 is sent through the three ratprs andn.
3. The resulting character is then sent through the reflecting #gtor

4. The character from step 3 is passed back through the retors;, andw, (i.e., in the opposite
direction).

5. The character from step 4 is subject to the invéBe! of the initial permutatiorf P.

The interesting point about the use of rotors is that after processing each character, every rotor might
be rotated by a certain angle (i.e., a certain amount of letters) before processing the next character. With
the Enigma, rotorr is rotated by one in anti-clockwise direction with every new character. Whdras
finished one round (i.e., after processing 26 characters), fgtaroves by one character. Similarly, rotor
o is rotated by one character whephas finished one revolution, and the reflecting ratgmoves when
7o has finished its rotation. Obviouslyy, is the slowest of the four rotors.

The process described above can be used both for encryption and decryption, provided that the permu-
tation rr implemented by the reflecting rotor is an involution. That meaps= 7r§1, or, equivalently,
¢ = mr(¢) whenever = mr(£). You may assume that this condition holds.

The secret key of the Enigma consists of (1) the rotgrsr,, w2, andrg, (2) the plugboard permutation
1P, and (3) the initial rotational displacemermis k1, ks, kg of mg, 71, 2, @andmr g (see below). The rotors
were changed infrequently and were selected from a set of four possible rotors in the Wehrmacht model.

11

NWERC 2001, Darmstadt, Germany

Problem

You are time-warped to Bletchley Park together with your laptop and should help to decipher some messages
which have been intercepted over the day. You are given the entire ciphertext, parts of the plaintext, and
parts of the Enigma key. Your task is to determine the correct key and finally complete the plaintext by
decoding the ciphertext.

Input

The first line contains the number of scenarios.

Each scenario begins with the secret key of the Enigma. The secret key is specified by 6 lines. The
first four lines contain a specification of the rotagg m;, 72 andwg as a sequence of lowercase alphabetic
characters. Characte(l < i < 26) gives the mapping of theth character of the alphabet (e.goha... ”
means thatd” is mapped to b”, “b” is mapped to h”, “c” is mapped to &” etc.). Physically, the sequence
of characters is given in clockwise direction looking from the front of the rotor stack . , 7g.

After the rotors follows a similar line giving the plugboard permutatigh Finally, the sixth line of
the key gives the initial displacemeky, k1, k2, kg of the four rotorsry, 71, w2, andr g as a string of four
characters wherea” means that the rotor is in its original position (as defined by the rotor specification
above), b” means that it is rotated by one position in the usual way etc. For exantgjaa” means that
rotor o has initial displacement 3;; has 6, andrs, g are both in their original position.

After the key follow two lines, each containing at least 1 and at most 80 lowercase letters, and no other
characters. The first line contains the plaintext while the second line contains the ciphertext.

The plaintext and any part of the key may ineomplete i.e., some positions in the strings may be

guestion marks?”. The number of question marks in the input will be at most 3.

Output

The output for each scenario begins with a line containfBgehario #i: ", wherei is the number of
the scenario starting at 1. In the next line you are to output the completed, decrypted plaintext. You can
assume that a solution exists and that it is unique. Terminate the output for each scenario with a blank line.

Sample Input

2

wfbtiznuvcgejpokshxgmadyrl
hmrgngpkjcaivwluebfzsyxtdo
druahlbfzvgmwckxpigysontje
owtvskypjifmluahrgecndbzgx
?bcdefghijkimnopgrstuvwxyz

aaaa
manyorganizationsrelyoncom??ters
grsuztldsznkwnerdpfbovvgnobkyign
ogzunvhtxwryfebicmjpkisgda
zupogrskynxtwdfqvbliejcmha
kzvlyjuodmscewxtfbphriggna
gbcnylaztwkfmdspqvoiurjxeh
rfyhkxbuvplgtgmdiewjosznca

dmeo

?2??

ave

12

NWERC 2001, Darmstadt, Germany

Sample Output

Scenario #1:
manyorganizationsrelyoncomputers

Scenario #2:
acm

13

NWERC 2001, Darmstadt, Germany

6 Gridland

Background

For years, computer scientists have been trying to find efficient solutions to different computing problems.
For some of them efficient algorithms are already available, these are the “easy” problems like sorting,
evaluating a polynomial or finding the shortest path in a graph. For the “hard” ones only exponential-time
algorithms are known. Thieaveling-salesman probletrelongs to this latter group. Given a setdftowns

and roads between these towns, the problem is to compute the shortest path allowing a salesman to visit
each of the towns once and only once and return to the starting point.

Problem

The president of Gridland has hired you to design a program that calculates the length of the shortest
traveling-salesman tour for the towns in the country. In Gridland, there is one town at each of the points of
a rectangular grid. Roads run from every town in the directions North, Northwest, West, Southwest, South,
Southeast, East, and Northeast, provided that there is a neighbouring town in that direction. The distance
between neighbouring towns in directions North—South or East—-West is 1 unit. The length of the roads is
measured by the Euclidean distance. For example, Figure 7 shewssGridland, i.e., a rectangular grid

of dimensions 2 by 3. 12 x 3-Gridland, the shortest tour has length 6.

Figure 7: A traveling-salesman tour 2nx 3-Gridland.
Input

The first line contains the number of scenarios.
For each scenario, the grid dimensionsandn will be given as two integer numbers in a single line,
separated by a single blank, satisfyingt m < 50 and1 < n < 50.

Output

The output for each scenario begins with a line containfagehario #i: ", wherei is the number of
the scenario starting at 1. In the next line, print the length of the shortest traveling-salesman tour rounded
to two decimal digits. The output for every scenario ends with a blank line.

Sample Input

NDNDN

2
3
Sample Output

Scenario #1:
4.00

Scenario #2:
6.00

14

NWERC 2001, Darmstadt, Germany

7 19

Background

A while ago it was quite cumbersome to create a message for the Short Message Service (SMS) on a mobile
phone. This was because you only have nine keys and the alphabet has more than nine letters, so most
characters could only be entered by pressing one key several times. For example, if you wanted to type
“hello " you had to press key 4 twice, key 3 twice, key 5 three times, again key 5 three times, and finally
key 6 three times. This procedure is very tedious and keeps many people from using the Short Message
Service.

This led manufacturers of mobile phones to try and find an easier way to enter text on a mobile phone.
The solution they developed is call@® text input The “9” in the name means that you can enter almost
arbitrary words with just nine keys and without pressing them more than once per character. The idea of the
solution is that you simply start typing the keys without repetition, and the software uses a built-in dictionary
to look for the “most probable” word matching the input. For example, to etietd " you simply press
keys 4, 3, 5, 5, and 6 once. Of course, this could also be the input for the gdjjch* ”, but since this is
no sensible English word, it can safely be ignored. By ruling out all other “improbable” solutions and only
taking proper English words into account, this method can speed up writing of short messages considerably.
Of course, if the word is not in the dictionary (like a name) then it has to be typed in manually using key

repetition again.

Cr Qo0 CTa

Figure 8: The Number-keys of a mobile phone.

More precisely, with every character typed, the phone will show the most probable combination of
characters it has found up to that point. Let us assume that the phone knows about theideardsahd
“hello ", with “idea ” occurring more often. Pressing the keys 4, 3, 5, 5, and 6, one after the other, the

HIZI TS

phone offers youi*”, “id ", then switches toliel ”, “hell ", and finally shows hello

Problem

Write an implementation of th&9 text inputwhich offers the most probable character combination after
every keystroke. The probability of a character combination is defined to be the sum of the probabilities
of all words in the dictionary that begin with this character combination. For example, if the dictionary
contains three wordghell 7, “hello ", and “hellfire ", the probability of the character combination

“hell " is the sum of the probabilities of these words. If some combinations have the same probability,
your program is to select the first one in alphabetic order. The user should also be able to type the beginning
of words. For example, if the worch€llo " is in the dictionary, the user can also enter the wdrd™ by

pressing the keys 4 and 3 even if this word is not listed in the dictionary.

15

NWERC 2001, Darmstadt, Germany

Input

The first line contains the number of scenarios.

Each scenario begins with a line containing the numibef distinct words in the dictionan(< w <
1000). These words are given in the nextlines in ascending alphabetic order. Every line starts with the
word which is a sequence of lowercase letters from the alphabet without whitespace, followed by a space
and an integep, 1 < p < 100, representing the probability of that word. No word will contain more than
100 letters.

Following the dictionary, there is a line containing a single integer Next follow m lines, each
consisting of a sequence of at most 100 decimal digits 2-9, followed by a single 1 meaning “next word”.

Output

The output for each scenario begins with a line containfagehario #i: ", wherei is the number of
the scenario starting at 1.

For every number sequensef the scenario, print one line for every keystroke stored, iexcept for
the 1 at the end. In this line, print the most probable word prefix defined by the probabilities in the dictionary
and the T9 selection rules explained above. Whenever none of the words in the dictionary match the given
number sequence, printMANUALLYinstead of a prefix.

Terminate the output for every number sequence with a blank line, and print an additional blank line at
the end of every scenario.

Sample Input

2

5

hell 3
hello 4
idea 8
next 8
super 3
2
435561
43321

7
another 5
contest 6
follow 3
give 13
integer 6
new 14
program 4
5
77647261
6391
4681
26684371
77771

16

NWERC 2001, Darmstadt, Germany

Sample Output

Scenario #1:
i

id

hel

hell

hello

i

id
ide
idea

Scenario #2:

p

pr

pro

prog
progr
progra
program

n
ne
new

in
int

c
co

con
cont
anoth
anothe
another

p

pr
MANUALLY
MANUALLY

17

NWERC 2001, Darmstadt, Germany

8 Number Game

Background

Christiane and Matthias are playing a new gameNbmber GameThe rules of the Number Game are:
Christian and Matthias take turns in choosing integer numbers greater than or equal to 2. The following
rules restrict the set of numbers which may be chosen:

R1 A number which has already been chosen by one of the players or a multiple of such a number cannot
be chosen. (A numberis amultiple of a numbery if z can be written ag - andz is a positive
integer.)

R2 A sum of two such multiples cannot be chosen either.

R3 For simplicity, a number which is greater than 20 cannot be chosen either. This enables a lot more
NPCs (Non-Personal-Computers) to play this game.

The player who cannot choose any number anymore looses the Number Game.

Here is an example: Matthias starts by choosing 4. Then Christiane is not allowed to choose 4, 8, 12,
etc. Let us assume her move is 3. Now, the numbers 3, 6, 9, etc. are excluded, too; furthermore, numbers
like: 7=3+4+4,10=2-3+4+4,11=3+2-4,13 =3-3+4,... are not available. So, in fact, the only
numbers left are 2 and 5. Matthias now says 2. Shee 2 + 3 is now forbidden, too, he wins because
there is no number for Christiane’s move left.

Your task is to write a program which will help to play the Number Game. In general, i.e., without
rule R3, this game may go on forever. However, with rule R3, it is possible to write a program that finds a
strategy to win the game.

Problem

Given a game situation (a list of numbers which are not yet forbidden), your program should output all
winning movesA winning move is a move by which the player whose turn it is can force a win no matter
what the other player will do. Now we define these terms more formally:

e A loosing positioris a position in which either

1. all numbers are forbidden, or
2. no winning move exists.

e A winning positionis a position in which a winning move exists.

e A winning moves a move after which the position is a loosing position.

Input

The first line contains the number of scenarios.

The input for each scenario describes a game position. It begins with a line containing the number
a, 0 < a < 20 of numbers which are still available. Next follows a single line with theumbers still
available, separated by single blanks.

You may assume that all game positions in the input could really occur in the Number Game (for
example, if3 is not in the list of numbers availablé will not be, either).

Output

The output for each scenario begins with a line containfBgehario #i: ", wherei is the number of
the scenario starting at 1. In the next line either prifhére is no winning move. " if this is true

for the position of the current scenario, drie winning moves are: wy wsy ... wg. " Where the

w; are all the winning moves, in ascending order, separated by single blanks. The output for each scenario
should be followed by a blank line.

18

NWERC 2001, Darmstadt, Germany

Sample Input

NNNEDN

Sample Output

Scenario #1:
The winning moves are: 2.

Scenario #2:
There is no winning move.

19

NWERC 2001, Darmstadt, Germany

9 Signal Box

Background

On its trip, a train has to pass a lot of points (American English: switches) and signals. The train’s track
depends on the status of points and signals. The responsible operator on the signal box does not handle
them separately, but tells the signal box the start and destination signal of the train’s journey. The box then
determines the correct status of points and signals and brings them into the right position.

AB P1 ‘ F '
4 A > w1 w2 < Nl> Wil AC
= N2 > w12
P3
<l e

Figure 9: Schematic view of points and signals on a sample train track.

Figure 9 shows a sample scenario in which railway tracks are shown as solid lines and signals are drawn
as triangles (this is also the first scenario of the sample input). Signals have a sense of direction: they are
only valid for the direction in which the triangle points (e.g., signal A is valid for trains running from left
to right, see also Figure 10). Points are located where railway tracks meet (e.g., at points W1, W2, etc.).
Points have &ont side (i.e., the side from which a train can take alternative directions) aadkside and
can be in two positions, namedand—. If a train comes from the front side, it leaves the point at-ther
— leg, dependent on the point’s position (see Figure 11). If the train comes from one of the the back legs, it
leaves it at the front leg. Even then the point has to be put into the right state, otherwise it gets damaged!

direction

front ﬁk back
7

identifier

Figure 10: Signal valid for trains running from left to right

front Wi back, position -
> identifier
back, position +

Figure 11: Point with two possible positions

Problem

Your task is to implement an automatic signal box, i.e., write a program which finds the correct position of
points and signals for a given start and destination. The signal box should follow these rules:

e Ajourney can only start and end at a signal. Both signals have to be in the same direction!
e During a journey a train must not change its direction.

e The journey consists of a sequence of sighal and point settings. A signal is only taken into account
for the journey if it has the right direction. A point along the way is always taken into account.

20

NWERC 2001, Darmstadt, Germany

o If there is more than one possible track from the start signal to the destination signal, the correct one
is determined by the following scheme:

— Consider a set gbath selection rulesThese are given as a triple, y, z) of point identifierse
andy, and a positiorz. A selection rule has the following meaning:

If there are alternative paths starting at painand ending at poiny wherez is ap-
proached from the front anglfrom the back, then consider only paths in whicls in
positionz (z is either+ or —).

— If no such rule exists for a given point the — position must be chosen.

The sample in- and output demonstrate the application of the rules. Furthermore, you can make the follow-
ing assumptions:

e The track plan is acyclic.
e Within a path, each element is only used once or not at all.

e If for a given pointz several rulegz, y, z) exist, they will agree on the position to be chosen.

Input

The first line contains the number of scenarios.
In the first line of the input for every scenario, you are given two signal identifiers for the departure and
the destination, separated by a single blank. The following line contains the nunolb@tements (points
and signals) in the track plan. You can assume n < 200 and that each element has a unique identifier
of at most 20 alphanumeric characters. The identifilétX is given to track ends.
There are signal and point elements, given in the following format:

e Points are specified by alin&f | F M P, whereWstands for “Weiche” (German for pointl), is
the identifier of the point- identifies the front element of the point, akthndP give the identifiers
of the back elements of the point depending on whether it mifius orplus position.

e Signals are specified by alin&“l F B”, whereS stands for “Signal” (German for signal),is the
identifier of the signal, an& andB give the identifiers of the front and back elements of the signal.
The direction for which the signal is valid is from front to back.

The following line contains the numbex 0 < p < 100, of path selection rules, followed by an-
otherp lines of the rules themselves. A rule is of the forleW X Y Zwhere FWis the identifier of
“FahrstraBenwahl-Regel” (German for path selection rde)Y andZ are the elements of the rule as ex-
plained above.

Output

The output for every scenario begins with a line containi8genario #i: ", wherei is the number of
the scenario starting at 1.

For every scenario print out the elements on the path from departure to destination in the order they
are passed by the train. However, print the signals first, followed by the points. Every element of the path
must be on a line by itself. Elements of the path are signal and point identifiers (the first and the last signal
identifiers must also be printed). For every point you should also give the correct position of the point as
either+ or — on the same line, separated from the point identifier by a single blank. If there is no possible
path, print NOT POSSIBLE

Terminate each scenario by a blank line.

21

NWERC 2001, Darmstadt, Germany

Sample Input
4

>
>
@

AB A XXX
A AB W1

W1l A W2 P3
w2 W1l P1 P2
P1 N1 W2

N1 P1 W11

W11 F N1 wi2
F AC wl1l

AC F XXX

S P2 N2 W2

S N2 P2 W12

W W12 W11 N3 N2
S P3 N3 W1

S N3 P3 W12

2

FW w1 W11l +

FW w11 w1l -

S1 S2

WOSOVOSSOOR

1 S2 XXX
2 S1 XXX

nounmummN
0nwn

-
(7]
SN

1 S1 S2 w2
2 S4 W1 S3

=
(92}
N

XXX W1
W4 XXX
W1l W2
W3 W4
S1 W2 S3
W3 W1 S3
W2 W4 S4
S2 W3 54

ssssR4882

PSSSSVOLVVENOSSVNLO®NO
A WN P

FW W1 w2 +

22

NWERC 2001, Darmstadt, Germany

Sample Output

Scenario #1:
A

N3

AC

W1 +

W12 -

W1l +

Scenario #2:
NOT POSSIBLE

Scenario #3:
S1

S4

W1l +

W2 -

Scenario #4:
S1
S3
S2
w1
w2
w3 -
W4 -

+ o+

23

