
AMPPZ problems analysis 2016 (Moscow ACM
ICPC Workshop edition)

Competition Jury

Institute of Computer Science, University of Wroc law

17 listopada 2016

Competition Jury AMPPZ problems analysis 2016 (Moscow ACM ICPC Workshop edition)

J – Sharing Chocolate

Problem

We have n rectangular chocolates with sizes hi × wi . We perform
k bisplitting operations: choose the largest chocolate and split it
into four roughly equal rectangular parts. Find the largest
chocolate left after performing k opeartions for several values of k .

Competition Jury AMPPZ problems analysis 2016 (Moscow ACM ICPC Workshop edition)

J – Sharing Chocolate

Suppose we have a single chocolate. Note that after performing
several operations the number of different chocolate sizes will be
small since each dimension of a new chocolate won’t be far from
the half the dimension of the old one.

We will store a priority queue that stores all different chocolate
sizes along with the number for each size. Now we can perform the
split simultaneously for all chocolates with the same size.
Since there are not too many different sizes, this works fast.

Competition Jury AMPPZ problems analysis 2016 (Moscow ACM ICPC Workshop edition)

J – Sharing Chocolate

Suppose we have a single chocolate. Note that after performing
several operations the number of different chocolate sizes will be
small since each dimension of a new chocolate won’t be far from
the half the dimension of the old one.
We will store a priority queue that stores all different chocolate
sizes along with the number for each size. Now we can perform the
split simultaneously for all chocolates with the same size.

Since there are not too many different sizes, this works fast.

Competition Jury AMPPZ problems analysis 2016 (Moscow ACM ICPC Workshop edition)

J – Sharing Chocolate

Suppose we have a single chocolate. Note that after performing
several operations the number of different chocolate sizes will be
small since each dimension of a new chocolate won’t be far from
the half the dimension of the old one.
We will store a priority queue that stores all different chocolate
sizes along with the number for each size. Now we can perform the
split simultaneously for all chocolates with the same size.
Since there are not too many different sizes, this works fast.

Competition Jury AMPPZ problems analysis 2016 (Moscow ACM ICPC Workshop edition)

D – Minimal Support of Transportation

For a given weighted graph find the minimal subset of edges that
intersects with any MST.

Competition Jury AMPPZ problems analysis 2016 (Moscow ACM ICPC Workshop edition)

D – Minimal Support of Transportation

Consider Kruskal algorithm for building MST. On its first step
Kruskal’s algorithm considers E ′ — the set of all edges of minimal
weight. It then takes the maximal number of edges of E ′ so that
not to form cycles. Then it “merges” the ends of each edge of E ′

and proceeds to the next weight.

If E ′ is not a spanning subgraph, MST will have to contain at least
one edge of greater weight. We can skip the edges of E ′ altogether
and proceed to greater weights.

Competition Jury AMPPZ problems analysis 2016 (Moscow ACM ICPC Workshop edition)

D – Minimal Support of Transportation

Consider Kruskal algorithm for building MST. On its first step
Kruskal’s algorithm considers E ′ — the set of all edges of minimal
weight. It then takes the maximal number of edges of E ′ so that
not to form cycles. Then it “merges” the ends of each edge of E ′

and proceeds to the next weight.
If E ′ is not a spanning subgraph, MST will have to contain at least
one edge of greater weight. We can skip the edges of E ′ altogether
and proceed to greater weights.

Competition Jury AMPPZ problems analysis 2016 (Moscow ACM ICPC Workshop edition)

D – Minimal Support of Transportation

A global cut of a graph is a way to partition its vertices into two
non-empty halves S and T . The size of the cut is the number of
edges between S and T .

Fact

The size of a minimal subset intersecting with any spanning tree of
a graph is equal to the size of its minimal global cut.

we can find minimal global cut with a number of different
algorithms, such as Stoer-Wagner algorithm, Karger’s randomized
method or simply finding a max-flow between a certain vertex s
and all other vertices.

Competition Jury AMPPZ problems analysis 2016 (Moscow ACM ICPC Workshop edition)

D – Minimal Support of Transportation

A global cut of a graph is a way to partition its vertices into two
non-empty halves S and T . The size of the cut is the number of
edges between S and T .

Fact

The size of a minimal subset intersecting with any spanning tree of
a graph is equal to the size of its minimal global cut.

we can find minimal global cut with a number of different
algorithms, such as Stoer-Wagner algorithm, Karger’s randomized
method or simply finding a max-flow between a certain vertex s
and all other vertices.

Competition Jury AMPPZ problems analysis 2016 (Moscow ACM ICPC Workshop edition)

D – Minimal Support of Transportation

A global cut of a graph is a way to partition its vertices into two
non-empty halves S and T . The size of the cut is the number of
edges between S and T .

Fact

The size of a minimal subset intersecting with any spanning tree of
a graph is equal to the size of its minimal global cut.

we can find minimal global cut with a number of different
algorithms, such as Stoer-Wagner algorithm, Karger’s randomized
method or simply finding a max-flow between a certain vertex s
and all other vertices.

Competition Jury AMPPZ problems analysis 2016 (Moscow ACM ICPC Workshop edition)

K – Johhny–Bohr model (Maciej Duleba)

Zadanie

Given a small (multi)set of natural numbers B (|B| ≤ 10), we
define a set A as follows:

n ∈ A (n ≤ 1015),(
∀x∈N∪{0}

)
(x ∈ A)⇒ (∀b∈B) (xb ∈ A).

What is the smallest possible cardinality of A?

Observation

The answer is always rather small.

Competition Jury AMPPZ problems analysis 2016 (Moscow ACM ICPC Workshop edition)

K – Johhny–Bohr model (Maciej Duleba)

Zadanie

Given a small (multi)set of natural numbers B (|B| ≤ 10), we
define a set A as follows:

n ∈ A (n ≤ 1015),(
∀x∈N∪{0}

)
(x ∈ A)⇒ (∀b∈B) (xb ∈ A).

What is the smallest possible cardinality of A?

Observation

The answer is always rather small.

Competition Jury AMPPZ problems analysis 2016 (Moscow ACM ICPC Workshop edition)

K – Johhny–Bohr model (Maciej Duleba)

The worst case is when B is the smallest ten prime numbers.
Then, |A| = 458123.

We can afford to explicitly generate all the elements of A.

We need to store the already generated distinct numbers (for
example with a std::unordered set), beware of repetitions
in B and the special case of 1 ∈ B.

Competition Jury AMPPZ problems analysis 2016 (Moscow ACM ICPC Workshop edition)

K – Johhny–Bohr model (Maciej Duleba)

The worst case is when B is the smallest ten prime numbers.
Then, |A| = 458123.

We can afford to explicitly generate all the elements of A.

We need to store the already generated distinct numbers (for
example with a std::unordered set), beware of repetitions
in B and the special case of 1 ∈ B.

Competition Jury AMPPZ problems analysis 2016 (Moscow ACM ICPC Workshop edition)

K – Johhny–Bohr model (Maciej Duleba)

The worst case is when B is the smallest ten prime numbers.
Then, |A| = 458123.

We can afford to explicitly generate all the elements of A.

We need to store the already generated distinct numbers (for
example with a std::unordered set), beware of repetitions
in B and the special case of 1 ∈ B.

Competition Jury AMPPZ problems analysis 2016 (Moscow ACM ICPC Workshop edition)

G – Parking Lot (Karol Pokorski)

Problem

Implement a data structure to simulate parallel parking on a line:

parking in a shortest gap between two cars (if there is a tie:
the leftmost),

leaving the parking.

Registration plates are converted to ids (for example, with
std::unordered map).

Gaps are stored in two structures (for example, in a std::set
with an appropriately modified comparator):

sorted according to the positions of their beginning,
sorted according to the length (if there is a tie: position of
their beginning).

We also store ids of the currently parked cars.

Competition Jury AMPPZ problems analysis 2016 (Moscow ACM ICPC Workshop edition)

G – Parking Lot (Karol Pokorski)

Problem

Implement a data structure to simulate parallel parking on a line:

parking in a shortest gap between two cars (if there is a tie:
the leftmost),

leaving the parking.

Registration plates are converted to ids (for example, with
std::unordered map).

Gaps are stored in two structures (for example, in a std::set
with an appropriately modified comparator):

sorted according to the positions of their beginning,
sorted according to the length (if there is a tie: position of
their beginning).

We also store ids of the currently parked cars.

Competition Jury AMPPZ problems analysis 2016 (Moscow ACM ICPC Workshop edition)

G – Parking Lot (Karol Pokorski)

Problem

Implement a data structure to simulate parallel parking on a line:

parking in a shortest gap between two cars (if there is a tie:
the leftmost),

leaving the parking.

Registration plates are converted to ids (for example, with
std::unordered map).

Gaps are stored in two structures (for example, in a std::set
with an appropriately modified comparator):

sorted according to the positions of their beginning,
sorted according to the length (if there is a tie: position of
their beginning).

We also store ids of the currently parked cars.

Competition Jury AMPPZ problems analysis 2016 (Moscow ACM ICPC Workshop edition)

G – Parking Lot (Karol Pokorski)

Problem

Implement a data structure to simulate parallel parking on a line:

parking in a shortest gap between two cars (if there is a tie:
the leftmost),

leaving the parking.

Registration plates are converted to ids (for example, with
std::unordered map).

Gaps are stored in two structures (for example, in a std::set
with an appropriately modified comparator):

sorted according to the positions of their beginning,
sorted according to the length (if there is a tie: position of
their beginning).

We also store ids of the currently parked cars.

Competition Jury AMPPZ problems analysis 2016 (Moscow ACM ICPC Workshop edition)

G – Parking Lot (Karol Pokorski)

When a car arrives:

find the shortest gap (or output NIE),
remove the gap from both structures,
and possibly insert the new shorter gap there.

When a car departs:

check if the car is present (and possibly output BRAK),
remove the adjacent gap from both structures,
insert the new gap (or, possible, merge the two adjacent gaps).

Competition Jury AMPPZ problems analysis 2016 (Moscow ACM ICPC Workshop edition)

G – Parking Lot (Karol Pokorski)

When a car arrives:

find the shortest gap (or output NIE),
remove the gap from both structures,
and possibly insert the new shorter gap there.

When a car departs:

check if the car is present (and possibly output BRAK),
remove the adjacent gap from both structures,
insert the new gap (or, possible, merge the two adjacent gaps).

Competition Jury AMPPZ problems analysis 2016 (Moscow ACM ICPC Workshop edition)

C – Generating Polygons (Karol Pokorski)

Problem

Generate a polygon with all sides parallel to the coordinate axes
with a specified area (1 ≤ a ≤ 1012) and perimeter (4 ≤ p ≤ 106).

Multiple possible solutions. We will present just one of them
(possibly not the simplest one).

Find a rectangle with area and perimeter similar to the desired
values (with a binary search or simple formula).

Competition Jury AMPPZ problems analysis 2016 (Moscow ACM ICPC Workshop edition)

C – Generating Polygons (Karol Pokorski)

Problem

Generate a polygon with all sides parallel to the coordinate axes
with a specified area (1 ≤ a ≤ 1012) and perimeter (4 ≤ p ≤ 106).

Multiple possible solutions. We will present just one of them
(possibly not the simplest one).

Find a rectangle with area and perimeter similar to the desired
values (with a binary search or simple formula).

Competition Jury AMPPZ problems analysis 2016 (Moscow ACM ICPC Workshop edition)

C – Generating Polygons (Karol Pokorski)

Problem

Generate a polygon with all sides parallel to the coordinate axes
with a specified area (1 ≤ a ≤ 1012) and perimeter (4 ≤ p ≤ 106).

Multiple possible solutions. We will present just one of them
(possibly not the simplest one).

Find a rectangle with area and perimeter similar to the desired
values (with a binary search or simple formula).

Competition Jury AMPPZ problems analysis 2016 (Moscow ACM ICPC Workshop edition)

C – Generating Polygons (Karol Pokorski)

We try to make small local changes to the rectangle. The
modifications are of two kinds:

change the area, but leave the perimeter intact,

change the perimeter by 2 and the area by 1.

Competition Jury AMPPZ problems analysis 2016 (Moscow ACM ICPC Workshop edition)

H – Anagrams (Karol Pokorski)

Problem

Construct the shortest word with exactly n anagrams (n ≤ 1012).

Formula for the number of anagrams

m =

(
a1

a1

)
·
(
a1 + a2

a2

)
·
(
a1 + a2 + a3

a3

)
· . . .

where ai is the number of occurrences of the letter i .

Spoiler

We will try to backtractk.

Competition Jury AMPPZ problems analysis 2016 (Moscow ACM ICPC Workshop edition)

H – Anagrams (Karol Pokorski)

Problem

Construct the shortest word with exactly n anagrams (n ≤ 1012).

Formula for the number of anagrams

m =

(
a1

a1

)
·
(
a1 + a2

a2

)
·
(
a1 + a2 + a3

a3

)
· . . .

where ai is the number of occurrences of the letter i .

Spoiler

We will try to backtractk.

Competition Jury AMPPZ problems analysis 2016 (Moscow ACM ICPC Workshop edition)

H – Anagrams (Karol Pokorski)

Problem

Construct the shortest word with exactly n anagrams (n ≤ 1012).

Formula for the number of anagrams

m =

(
a1

a1

)
·
(
a1 + a2

a2

)
·
(
a1 + a2 + a3

a3

)
· . . .

where ai is the number of occurrences of the letter i .

Spoiler

We will try to backtractk.

Competition Jury AMPPZ problems analysis 2016 (Moscow ACM ICPC Workshop edition)

H – Anagrams (Karol Pokorski)

Question

How many distinct letter might be required?
In particular, is restricting the alphabet to a–z a possible problem?

Answer

No! Word with k distinct letter has at least k! anagrams.

15! > 1012

Competition Jury AMPPZ problems analysis 2016 (Moscow ACM ICPC Workshop edition)

H – Anagrams (Karol Pokorski)

Question

How many distinct letter might be required?
In particular, is restricting the alphabet to a–z a possible problem?

Answer

No! Word with k distinct letter has at least k! anagrams.

15! > 1012

Competition Jury AMPPZ problems analysis 2016 (Moscow ACM ICPC Workshop edition)

H – Anagrams (Karol Pokorski)

We insert the letters one-by-one assuming that
a1 ≥ a2 ≥ a3 ≥

After inserting the next letter, the current number of
anagrams must be a divisor of n. Otherwise, we can
immediately terminate.

If a1 = 1 then the situation is simple because ai = 1,

If a1 > 1 (but not too large) then the situation is also simple
because a1 ≥ a2 ≥ a3 ≥ . . . (there are few possibilities for the
values a2, a3, . . .),

If a1 >> 1 (really large) then the situation is also not too bad
because after adding a2 occurrences of b the current number
of anagrams

(a1+a2
a2

)
will be very large. So there are few

possibilities for the remaining choices, because the final
product of binomial coefficients must be equal to n.

Competition Jury AMPPZ problems analysis 2016 (Moscow ACM ICPC Workshop edition)

H – Anagrams (Karol Pokorski)

We insert the letters one-by-one assuming that
a1 ≥ a2 ≥ a3 ≥

After inserting the next letter, the current number of
anagrams must be a divisor of n. Otherwise, we can
immediately terminate.

If a1 = 1 then the situation is simple because ai = 1,

If a1 > 1 (but not too large) then the situation is also simple
because a1 ≥ a2 ≥ a3 ≥ . . . (there are few possibilities for the
values a2, a3, . . .),

If a1 >> 1 (really large) then the situation is also not too bad
because after adding a2 occurrences of b the current number
of anagrams

(a1+a2
a2

)
will be very large. So there are few

possibilities for the remaining choices, because the final
product of binomial coefficients must be equal to n.

Competition Jury AMPPZ problems analysis 2016 (Moscow ACM ICPC Workshop edition)

H – Anagrams (Karol Pokorski)

We insert the letters one-by-one assuming that
a1 ≥ a2 ≥ a3 ≥

After inserting the next letter, the current number of
anagrams must be a divisor of n. Otherwise, we can
immediately terminate.

If a1 = 1 then the situation is simple because ai = 1,

If a1 > 1 (but not too large) then the situation is also simple
because a1 ≥ a2 ≥ a3 ≥ . . . (there are few possibilities for the
values a2, a3, . . .),

If a1 >> 1 (really large) then the situation is also not too bad
because after adding a2 occurrences of b the current number
of anagrams

(a1+a2
a2

)
will be very large. So there are few

possibilities for the remaining choices, because the final
product of binomial coefficients must be equal to n.

Competition Jury AMPPZ problems analysis 2016 (Moscow ACM ICPC Workshop edition)

H – Anagrams (Karol Pokorski)

We insert the letters one-by-one assuming that
a1 ≥ a2 ≥ a3 ≥

After inserting the next letter, the current number of
anagrams must be a divisor of n. Otherwise, we can
immediately terminate.

If a1 = 1 then the situation is simple because ai = 1,

If a1 > 1 (but not too large) then the situation is also simple
because a1 ≥ a2 ≥ a3 ≥ . . . (there are few possibilities for the
values a2, a3, . . .),

If a1 >> 1 (really large) then the situation is also not too bad
because after adding a2 occurrences of b the current number
of anagrams

(a1+a2
a2

)
will be very large. So there are few

possibilities for the remaining choices, because the final
product of binomial coefficients must be equal to n.

Competition Jury AMPPZ problems analysis 2016 (Moscow ACM ICPC Workshop edition)

A – Weak pseudorandom generator (Karol Pokorski)

Problem

Given a linear congruential generator

tn = (a · tn−1 + b) mod p

find x such that tx = N.

Forget about the modulo for the time being.

t1 = a · t0 + b.

t2 = a · t1 + b = a · (a · t0 + b) + b = a2 · t0 + ab + b.

tn = an · t0 + b · (an−1 + an−2 + · · ·+ a0).

Competition Jury AMPPZ problems analysis 2016 (Moscow ACM ICPC Workshop edition)

A – Weak pseudorandom generator (Karol Pokorski)

Problem

Given a linear congruential generator

tn = (a · tn−1 + b) mod p

find x such that tx = N.

Forget about the modulo for the time being.

t1 = a · t0 + b.

t2 = a · t1 + b = a · (a · t0 + b) + b = a2 · t0 + ab + b.

tn = an · t0 + b · (an−1 + an−2 + · · ·+ a0).

Competition Jury AMPPZ problems analysis 2016 (Moscow ACM ICPC Workshop edition)

A – Weak pseudorandom generator (Karol Pokorski)

Explicit formula for tm

tn = an · t0 + b · a
n − 1

a− 1

We know tn, t0, a, b, so we only have to do some simple
manipulations to obtain an.

Solving for an

an =
tn · (a− 1) + b

t0 · (a− 1) + b

Competition Jury AMPPZ problems analysis 2016 (Moscow ACM ICPC Workshop edition)

A – Weak pseudorandom generator (Karol Pokorski)

Explicit formula for tm

tn = an · t0 + b · a
n − 1

a− 1

We know tn, t0, a, b, so we only have to do some simple
manipulations to obtain an.

Solving for an

an =
tn · (a− 1) + b

t0 · (a− 1) + b

Competition Jury AMPPZ problems analysis 2016 (Moscow ACM ICPC Workshop edition)

A – Weak pseudorandom generator (Karol Pokorski)

Explicit formula for tm

tn = an · t0 + b · a
n − 1

a− 1

We know tn, t0, a, b, so we only have to do some simple
manipulations to obtain an.

Solving for an

an =
tn · (a− 1) + b

t0 · (a− 1) + b

Competition Jury AMPPZ problems analysis 2016 (Moscow ACM ICPC Workshop edition)

A – Weak pseudorandom generator (Karol Pokorski)

Now we bring back the modulo and replace division with
modular multiplicative inverse.

n can be extracted by taking a discrete logarithm. This can
be solved with the baby–step giant–step algorithm in time
O(
√
p · log p).

Beware of division by 0, (multiple) corner cases, and use long

long.

Competition Jury AMPPZ problems analysis 2016 (Moscow ACM ICPC Workshop edition)

E – Taxi (Karol Pokorski)

Zadanie

We have n taxi firms (≤ 105). Each taxi of i-th firm can fit
ci people (≤ 15), and a ride that is x kilometers long is worth
si + pi · (x − 1).
We are given q queries (≤ 105) for driving mi people (≤ 106) at di
kilometers (≤ 106). For each query find the optimal cost to
transporting all people with (possibly several) taxi firms.

Competition Jury AMPPZ problems analysis 2016 (Moscow ACM ICPC Workshop edition)

E – Taxi (Karol Pokorski)

Separate the firms in groups by capacity. Let’s consider each
group separately.

The cost for hiring each firm is linear in the distance.

Find the convex hull of these linear functions. We now know
the distance intervals such that a particular taxi firm has the
optimal price.

Answer the queries offline, initially sort them by distance.

We can store pointers to optimal firms for each capacity, and
maintain them while increasing the distance. We now only
have to consider only ≤ 15 firms with different capacities.

Competition Jury AMPPZ problems analysis 2016 (Moscow ACM ICPC Workshop edition)

E – Taxi (Karol Pokorski)

Separate the firms in groups by capacity. Let’s consider each
group separately.

The cost for hiring each firm is linear in the distance.

Find the convex hull of these linear functions. We now know
the distance intervals such that a particular taxi firm has the
optimal price.

Answer the queries offline, initially sort them by distance.

We can store pointers to optimal firms for each capacity, and
maintain them while increasing the distance. We now only
have to consider only ≤ 15 firms with different capacities.

Competition Jury AMPPZ problems analysis 2016 (Moscow ACM ICPC Workshop edition)

E – Taxi (Karol Pokorski)

Separate the firms in groups by capacity. Let’s consider each
group separately.

The cost for hiring each firm is linear in the distance.

Find the convex hull of these linear functions. We now know
the distance intervals such that a particular taxi firm has the
optimal price.

Answer the queries offline, initially sort them by distance.

We can store pointers to optimal firms for each capacity, and
maintain them while increasing the distance. We now only
have to consider only ≤ 15 firms with different capacities.

Competition Jury AMPPZ problems analysis 2016 (Moscow ACM ICPC Workshop edition)

E – Taxi (Karol Pokorski)

Observation

Each query is now a knapsack problem: we have to collect total
mass ≤ mi using items (taxi firms) with weights ci and costs di .

Problem

Solving this problem naively works in O(max(ci) ·mi).

Competition Jury AMPPZ problems analysis 2016 (Moscow ACM ICPC Workshop edition)

E – Taxi (Karol Pokorski)

Observation

Each query is now a knapsack problem: we have to collect total
mass ≤ mi using items (taxi firms) with weights ci and costs di .

Problem

Solving this problem naively works in O(max(ci) ·mi).

Competition Jury AMPPZ problems analysis 2016 (Moscow ACM ICPC Workshop edition)

E – Taxi (Karol Pokorski)

Consider a taxi firm that offers the best per-passenger cost.
Suppose that this firm has capacity C . Note that we shouldn’t
use ≥ C taxis from any other firm since we can interchange
them with the “optimal” firm and optimize the cost.

Solution

We can now reduce the backpack capacity to C 2. The rest will be
filled with taxis of capacity C .
We have to try all possibilities for the total weights of “small”
taxis.

Competition Jury AMPPZ problems analysis 2016 (Moscow ACM ICPC Workshop edition)

E – Taxi (Karol Pokorski)

Consider a taxi firm that offers the best per-passenger cost.
Suppose that this firm has capacity C . Note that we shouldn’t
use ≥ C taxis from any other firm since we can interchange
them with the “optimal” firm and optimize the cost.

Solution

We can now reduce the backpack capacity to C 2. The rest will be
filled with taxis of capacity C .
We have to try all possibilities for the total weights of “small”
taxis.

Competition Jury AMPPZ problems analysis 2016 (Moscow ACM ICPC Workshop edition)

F – Ansisocial network (Pawe l Gawrychowski)

Zadanie

We have an undirected graph on n ≤ 250 000 vertices and
m ≤ 2 000 000 edges. We have many operations like: for given
v1, v2, . . . , vs flip edges (vi , vj) for all 1 ≤ i < j ≤ s. Which
vertices are isolated in the resulting graph?

Competition Jury AMPPZ problems analysis 2016 (Moscow ACM ICPC Workshop edition)

F – Ansisocial network (Pawe l Gawrychowski)

Choose a number xu ∈ {0, 1} randomly for each vertex u.

Let E ′ be the set of edges of the resulting graph. If the vertex
v if isolated then

∑
(u,v)∈E ′ xu = 0 mod 2.

. . . and if it isn’t then
∑

(u,v)∈E ′ xu 6= 0 mod 2 with

probability 1
2 !

Let’s call this value the sum of s(v). First we can count the
sums in the original graph.

To update all sums after one operation in O(s) time, we have
to count t =

∑s
i=1 xvi mod 2, and then add t + xvi mod 2 to

each s(vi).

To be safe, we can repeat the whole procedure 50 times. In
fact, you can perform all these procedures by storing a
random long long for each vertex and using xor instead of
modulo 2 sum.

Competition Jury AMPPZ problems analysis 2016 (Moscow ACM ICPC Workshop edition)

F – Ansisocial network (Pawe l Gawrychowski)

Choose a number xu ∈ {0, 1} randomly for each vertex u.

Let E ′ be the set of edges of the resulting graph. If the vertex
v if isolated then

∑
(u,v)∈E ′ xu = 0 mod 2.

. . . and if it isn’t then
∑

(u,v)∈E ′ xu 6= 0 mod 2 with

probability 1
2 !

Let’s call this value the sum of s(v). First we can count the
sums in the original graph.

To update all sums after one operation in O(s) time, we have
to count t =

∑s
i=1 xvi mod 2, and then add t + xvi mod 2 to

each s(vi).

To be safe, we can repeat the whole procedure 50 times. In
fact, you can perform all these procedures by storing a
random long long for each vertex and using xor instead of
modulo 2 sum.

Competition Jury AMPPZ problems analysis 2016 (Moscow ACM ICPC Workshop edition)

F – Ansisocial network (Pawe l Gawrychowski)

Choose a number xu ∈ {0, 1} randomly for each vertex u.

Let E ′ be the set of edges of the resulting graph. If the vertex
v if isolated then

∑
(u,v)∈E ′ xu = 0 mod 2.

. . . and if it isn’t then
∑

(u,v)∈E ′ xu 6= 0 mod 2 with

probability 1
2 !

Let’s call this value the sum of s(v). First we can count the
sums in the original graph.

To update all sums after one operation in O(s) time, we have
to count t =

∑s
i=1 xvi mod 2, and then add t + xvi mod 2 to

each s(vi).

To be safe, we can repeat the whole procedure 50 times. In
fact, you can perform all these procedures by storing a
random long long for each vertex and using xor instead of
modulo 2 sum.

Competition Jury AMPPZ problems analysis 2016 (Moscow ACM ICPC Workshop edition)

F – Ansisocial network (Pawe l Gawrychowski)

Choose a number xu ∈ {0, 1} randomly for each vertex u.

Let E ′ be the set of edges of the resulting graph. If the vertex
v if isolated then

∑
(u,v)∈E ′ xu = 0 mod 2.

. . . and if it isn’t then
∑

(u,v)∈E ′ xu 6= 0 mod 2 with

probability 1
2 !

Let’s call this value the sum of s(v). First we can count the
sums in the original graph.

To update all sums after one operation in O(s) time, we have
to count t =

∑s
i=1 xvi mod 2, and then add t + xvi mod 2 to

each s(vi).

To be safe, we can repeat the whole procedure 50 times. In
fact, you can perform all these procedures by storing a
random long long for each vertex and using xor instead of
modulo 2 sum.

Competition Jury AMPPZ problems analysis 2016 (Moscow ACM ICPC Workshop edition)

F – Ansisocial network (Pawe l Gawrychowski)

Choose a number xu ∈ {0, 1} randomly for each vertex u.

Let E ′ be the set of edges of the resulting graph. If the vertex
v if isolated then

∑
(u,v)∈E ′ xu = 0 mod 2.

. . . and if it isn’t then
∑

(u,v)∈E ′ xu 6= 0 mod 2 with

probability 1
2 !

Let’s call this value the sum of s(v). First we can count the
sums in the original graph.

To update all sums after one operation in O(s) time, we have
to count t =

∑s
i=1 xvi mod 2, and then add t + xvi mod 2 to

each s(vi).

To be safe, we can repeat the whole procedure 50 times. In
fact, you can perform all these procedures by storing a
random long long for each vertex and using xor instead of
modulo 2 sum.

Competition Jury AMPPZ problems analysis 2016 (Moscow ACM ICPC Workshop edition)

F – Ansisocial network (Pawe l Gawrychowski)

Choose a number xu ∈ {0, 1} randomly for each vertex u.

Let E ′ be the set of edges of the resulting graph. If the vertex
v if isolated then

∑
(u,v)∈E ′ xu = 0 mod 2.

. . . and if it isn’t then
∑

(u,v)∈E ′ xu 6= 0 mod 2 with

probability 1
2 !

Let’s call this value the sum of s(v). First we can count the
sums in the original graph.

To update all sums after one operation in O(s) time, we have
to count t =

∑s
i=1 xvi mod 2, and then add t + xvi mod 2 to

each s(vi).

To be safe, we can repeat the whole procedure 50 times. In
fact, you can perform all these procedures by storing a
random long long for each vertex and using xor instead of
modulo 2 sum.

Competition Jury AMPPZ problems analysis 2016 (Moscow ACM ICPC Workshop edition)

L – Constitutional Tribunal (Pawe l Gawrychowski)

Zadanie

We have a rooted tree on n vertices, n ≤ 5 000. Vertex i has
bandwidth ci and initially contains si tokens that we want to move
to the root. Each second each vertex moves at most ci tokens it
contains to its parent. How many seconds will pass until tokens
end up in the root?

Competition Jury AMPPZ problems analysis 2016 (Moscow ACM ICPC Workshop edition)

L – Constitutional Tribunal (Pawe l Gawrychowski)

For each vertex let’s store the number of transmitted tokens for
each second. The can be described as a graph of a function.

The key observation

This graph contains O(n) steps.

Competition Jury AMPPZ problems analysis 2016 (Moscow ACM ICPC Workshop edition)

L – Constitutional Tribunal (Pawe l Gawrychowski)

For each vertex let’s store the number of transmitted tokens for
each second. The can be described as a graph of a function.

The key observation

This graph contains O(n) steps.

Competition Jury AMPPZ problems analysis 2016 (Moscow ACM ICPC Workshop edition)

L – Constitutional Tribunal (Pawe l Gawrychowski)

For each vertex let’s store the number of transmitted tokens for
each second. The can be described as a graph of a function.

The key observation

This graph contains O(n) steps.

Competition Jury AMPPZ problems analysis 2016 (Moscow ACM ICPC Workshop edition)

L – Constitutional Tribunal (Pawe l Gawrychowski)

The only operation we need is to build the graph for a vertex u
given the graphs for each of its children. First we sum up all the
children’s functions. Then we take the limit cu into account.

Competition Jury AMPPZ problems analysis 2016 (Moscow ACM ICPC Workshop edition)

L – Constitutional Tribunal (Pawe l Gawrychowski)

The only operation we need is to build the graph for a vertex u
given the graphs for each of its children. First we sum up all the
children’s functions. Then we take the limit cu into account.

Competition Jury AMPPZ problems analysis 2016 (Moscow ACM ICPC Workshop edition)

L – Constitutional Tribunal (Pawe l Gawrychowski)

We can perform such “truncation” in O(n) if we scan from
left to right.

Summing two structures is effectively merging two sorted lists
and can be done O(n) as well.

We have to make O(n) operations of these kinds, thus the
total complexity is O(n2) (?).

Competition Jury AMPPZ problems analysis 2016 (Moscow ACM ICPC Workshop edition)

L – Constitutional Tribunal (Pawe l Gawrychowski)

We can perform such “truncation” in O(n) if we scan from
left to right.

Summing two structures is effectively merging two sorted lists
and can be done O(n) as well.

We have to make O(n) operations of these kinds, thus the
total complexity is O(n2) (?).

Competition Jury AMPPZ problems analysis 2016 (Moscow ACM ICPC Workshop edition)

L – Constitutional Tribunal (Pawe l Gawrychowski)

We can perform such “truncation” in O(n) if we scan from
left to right.

Summing two structures is effectively merging two sorted lists
and can be done O(n) as well.

We have to make O(n) operations of these kinds, thus the
total complexity is O(n2) (?).

Competition Jury AMPPZ problems analysis 2016 (Moscow ACM ICPC Workshop edition)

I – Mountain Hike (Jakub Tarnawski)

Problem

We are given an acyclic graph on n vertices and m weighted edges,
n ≤ 1 000, m ≤ 10 000, with selected vertices s1, t1, s2, t2. Find
two vertex-distjoint paths s1 → t1 and s2 → t2 with the lowest
possible total cost.

Sort the vertices by increasing altitude so that the new
numbers are 1, 2, . . . , n.

We have to separately consider the cases when
|{s1, t1, s2, t2}| < 4.

We now construct a new graph with vertices being ordere
pairs (u, v), u 6= v . We want to add edges in such a way that
each path from (s1, s2) to (u, v) corresponds to to
vertex-disjoint paths s1 → u and s2 → v .

In a sense, the new graph simulates moving the vertices in
parallel.

Competition Jury AMPPZ problems analysis 2016 (Moscow ACM ICPC Workshop edition)

I – Mountain Hike (Jakub Tarnawski)

Problem

We are given an acyclic graph on n vertices and m weighted edges,
n ≤ 1 000, m ≤ 10 000, with selected vertices s1, t1, s2, t2. Find
two vertex-distjoint paths s1 → t1 and s2 → t2 with the lowest
possible total cost.

Sort the vertices by increasing altitude so that the new
numbers are 1, 2, . . . , n.

We have to separately consider the cases when
|{s1, t1, s2, t2}| < 4.

We now construct a new graph with vertices being ordere
pairs (u, v), u 6= v . We want to add edges in such a way that
each path from (s1, s2) to (u, v) corresponds to to
vertex-disjoint paths s1 → u and s2 → v .

In a sense, the new graph simulates moving the vertices in
parallel.

Competition Jury AMPPZ problems analysis 2016 (Moscow ACM ICPC Workshop edition)

I – Mountain Hike (Jakub Tarnawski)

Problem

We are given an acyclic graph on n vertices and m weighted edges,
n ≤ 1 000, m ≤ 10 000, with selected vertices s1, t1, s2, t2. Find
two vertex-distjoint paths s1 → t1 and s2 → t2 with the lowest
possible total cost.

Sort the vertices by increasing altitude so that the new
numbers are 1, 2, . . . , n.

We have to separately consider the cases when
|{s1, t1, s2, t2}| < 4.

We now construct a new graph with vertices being ordere
pairs (u, v), u 6= v . We want to add edges in such a way that
each path from (s1, s2) to (u, v) corresponds to to
vertex-disjoint paths s1 → u and s2 → v .

In a sense, the new graph simulates moving the vertices in
parallel.

Competition Jury AMPPZ problems analysis 2016 (Moscow ACM ICPC Workshop edition)

I – Mountain Hike (Jakub Tarnawski)

Problem

We are given an acyclic graph on n vertices and m weighted edges,
n ≤ 1 000, m ≤ 10 000, with selected vertices s1, t1, s2, t2. Find
two vertex-distjoint paths s1 → t1 and s2 → t2 with the lowest
possible total cost.

Sort the vertices by increasing altitude so that the new
numbers are 1, 2, . . . , n.

We have to separately consider the cases when
|{s1, t1, s2, t2}| < 4.

We now construct a new graph with vertices being ordere
pairs (u, v), u 6= v . We want to add edges in such a way that
each path from (s1, s2) to (u, v) corresponds to to
vertex-disjoint paths s1 → u and s2 → v .

In a sense, the new graph simulates moving the vertices in
parallel.

Competition Jury AMPPZ problems analysis 2016 (Moscow ACM ICPC Workshop edition)

I – Mountain Hike (Jakub Tarnawski)

Problem

We are given an acyclic graph on n vertices and m weighted edges,
n ≤ 1 000, m ≤ 10 000, with selected vertices s1, t1, s2, t2. Find
two vertex-distjoint paths s1 → t1 and s2 → t2 with the lowest
possible total cost.

Sort the vertices by increasing altitude so that the new
numbers are 1, 2, . . . , n.

We have to separately consider the cases when
|{s1, t1, s2, t2}| < 4.

We now construct a new graph with vertices being ordere
pairs (u, v), u 6= v . We want to add edges in such a way that
each path from (s1, s2) to (u, v) corresponds to to
vertex-disjoint paths s1 → u and s2 → v .

In a sense, the new graph simulates moving the vertices in
parallel.

Competition Jury AMPPZ problems analysis 2016 (Moscow ACM ICPC Workshop edition)

I – Mountain Hike (Jakub Tarnawski)

There are tow cases. If u < v or v = t2 we try to guess the
next vertex on the path that currently ends in u. To do that,
we want to try all edges (u, u′) such that u′ 6= v . For each
such of the original graph edge we add the edge in the new
graph from (u, v) to (u′, v) with the same cost.

. . . If v < u or u = t1, try to move v forward using all edges
(v , v ′) such that v ′ 6= u.

Now we simple find the shortest path from (s1, s2) to (t1, t2)
in the new graph!

The new graph is acyclic, thus instead of Dijkstra we can
implement DP that processed the vertices in the topological
order in total linear time.

New graph has O(nm) edges, thus the solution has the same
complexity.

Competition Jury AMPPZ problems analysis 2016 (Moscow ACM ICPC Workshop edition)

I – Mountain Hike (Jakub Tarnawski)

There are tow cases. If u < v or v = t2 we try to guess the
next vertex on the path that currently ends in u. To do that,
we want to try all edges (u, u′) such that u′ 6= v . For each
such of the original graph edge we add the edge in the new
graph from (u, v) to (u′, v) with the same cost.

. . . If v < u or u = t1, try to move v forward using all edges
(v , v ′) such that v ′ 6= u.

Now we simple find the shortest path from (s1, s2) to (t1, t2)
in the new graph!

The new graph is acyclic, thus instead of Dijkstra we can
implement DP that processed the vertices in the topological
order in total linear time.

New graph has O(nm) edges, thus the solution has the same
complexity.

Competition Jury AMPPZ problems analysis 2016 (Moscow ACM ICPC Workshop edition)

I – Mountain Hike (Jakub Tarnawski)

There are tow cases. If u < v or v = t2 we try to guess the
next vertex on the path that currently ends in u. To do that,
we want to try all edges (u, u′) such that u′ 6= v . For each
such of the original graph edge we add the edge in the new
graph from (u, v) to (u′, v) with the same cost.

. . . If v < u or u = t1, try to move v forward using all edges
(v , v ′) such that v ′ 6= u.

Now we simple find the shortest path from (s1, s2) to (t1, t2)
in the new graph!

The new graph is acyclic, thus instead of Dijkstra we can
implement DP that processed the vertices in the topological
order in total linear time.

New graph has O(nm) edges, thus the solution has the same
complexity.

Competition Jury AMPPZ problems analysis 2016 (Moscow ACM ICPC Workshop edition)

I – Mountain Hike (Jakub Tarnawski)

There are tow cases. If u < v or v = t2 we try to guess the
next vertex on the path that currently ends in u. To do that,
we want to try all edges (u, u′) such that u′ 6= v . For each
such of the original graph edge we add the edge in the new
graph from (u, v) to (u′, v) with the same cost.

. . . If v < u or u = t1, try to move v forward using all edges
(v , v ′) such that v ′ 6= u.

Now we simple find the shortest path from (s1, s2) to (t1, t2)
in the new graph!

The new graph is acyclic, thus instead of Dijkstra we can
implement DP that processed the vertices in the topological
order in total linear time.

New graph has O(nm) edges, thus the solution has the same
complexity.

Competition Jury AMPPZ problems analysis 2016 (Moscow ACM ICPC Workshop edition)

I – Mountain Hike (Jakub Tarnawski)

There are tow cases. If u < v or v = t2 we try to guess the
next vertex on the path that currently ends in u. To do that,
we want to try all edges (u, u′) such that u′ 6= v . For each
such of the original graph edge we add the edge in the new
graph from (u, v) to (u′, v) with the same cost.

. . . If v < u or u = t1, try to move v forward using all edges
(v , v ′) such that v ′ 6= u.

Now we simple find the shortest path from (s1, s2) to (t1, t2)
in the new graph!

The new graph is acyclic, thus instead of Dijkstra we can
implement DP that processed the vertices in the topological
order in total linear time.

New graph has O(nm) edges, thus the solution has the same
complexity.

Competition Jury AMPPZ problems analysis 2016 (Moscow ACM ICPC Workshop edition)

B – Home Alone: Johnny Lost in New York (Pawe l
Gawrychowski)

Problem

Build a Hamiltonian path between cells (sx , sy) and (tx , ty) on an
n ×m grid, 4 ≤ n,m ≤ 1 000.

Observation

Adjacent cells have different colors. Thus (sx , sy) and (tx , ty) must
have different colors exactly when n ·m is even.

n,m ≥ 4

If that condition holds, the answer always exists.

Competition Jury AMPPZ problems analysis 2016 (Moscow ACM ICPC Workshop edition)

B – Home Alone: Johnny Lost in New York (Pawe l
Gawrychowski)

Problem

Build a Hamiltonian path between cells (sx , sy) and (tx , ty) on an
n ×m grid, 4 ≤ n,m ≤ 1 000.

Observation

Adjacent cells have different colors. Thus (sx , sy) and (tx , ty) must
have different colors exactly when n ·m is even.

n,m ≥ 4

If that condition holds, the answer always exists.

Competition Jury AMPPZ problems analysis 2016 (Moscow ACM ICPC Workshop edition)

B – Home Alone: Johnny Lost in New York (Pawe l
Gawrychowski)

Problem

Build a Hamiltonian path between cells (sx , sy) and (tx , ty) on an
n ×m grid, 4 ≤ n,m ≤ 1 000.

Observation

Adjacent cells have different colors. Thus (sx , sy) and (tx , ty) must
have different colors exactly when n ·m is even.

n,m ≥ 4

If that condition holds, the answer always exists.

Competition Jury AMPPZ problems analysis 2016 (Moscow ACM ICPC Workshop edition)

B – Home Alone: Johnny Lost in New York (Pawe l
Gawrychowski)

. . . We can perform brute-force if n,m ∈ {4, 5, 6}. But is there
a proof? And how to construct the path?

Let’s do an induction argument by n ·m.

Competition Jury AMPPZ problems analysis 2016 (Moscow ACM ICPC Workshop edition)

B – Home Alone: Johnny Lost in New York (Pawe l
Gawrychowski)

. . . We can perform brute-force if n,m ∈ {4, 5, 6}. But is there
a proof? And how to construct the path?

Let’s do an induction argument by n ·m.

Competition Jury AMPPZ problems analysis 2016 (Moscow ACM ICPC Workshop edition)

B – Home Alone: Johnny Lost in New York (Pawe l
Gawrychowski)

Let n ≥ 7 and the top two rows don’t contain start or finish points.

Competition Jury AMPPZ problems analysis 2016 (Moscow ACM ICPC Workshop edition)

B – Home Alone: Johnny Lost in New York (Pawe l
Gawrychowski)

Let n ≥ 7 and the top two rows don’t contain start or finish points.

Competition Jury AMPPZ problems analysis 2016 (Moscow ACM ICPC Workshop edition)

B – Home Alone: Johnny Lost in New York (Pawe l
Gawrychowski)

Let n ≥ 7 and the top two rows don’t contain start or finish points.

Competition Jury AMPPZ problems analysis 2016 (Moscow ACM ICPC Workshop edition)

B – Home Alone: Johnny Lost in New York (Pawe l
Gawrychowski)

Let n ≥ 7 and the top two rows don’t contain start or finish points.

Competition Jury AMPPZ problems analysis 2016 (Moscow ACM ICPC Workshop edition)

B – Home Alone: Johnny Lost in New York (Pawe l
Gawrychowski)

Let n ≥ 7 and the top two rows don’t contain start or finish points.

Competition Jury AMPPZ problems analysis 2016 (Moscow ACM ICPC Workshop edition)

B – Home Alone: Johnny Lost in New York (Pawe l
Gawrychowski)

Let n ≥ 7 and the top two rows don’t contain start or finish points.

Competition Jury AMPPZ problems analysis 2016 (Moscow ACM ICPC Workshop edition)

B – Home Alone: Johnny Lost in New York (Pawe l
Gawrychowski)

The same trick also works if the bottom two rows don’t
contain start or finish.

Thus we only have to deal with the case when the start is in
the top two rows, and the finish is not in top three rows
(remember that n is not too small).

We can reduce to the previous case by erasing the top two
rows and find the answer recursively on the (n − 2)×m grid,
with the start point chosen among the third row in a suitable
way.

The same construction applies when m ≥ 7. If both n and m are
small, we can simply perform brute-force. It is true that the answer
exists whenever n,m ≥ 4 and the parity condition is satisfied.

Competition Jury AMPPZ problems analysis 2016 (Moscow ACM ICPC Workshop edition)

B – Home Alone: Johnny Lost in New York (Pawe l
Gawrychowski)

The same trick also works if the bottom two rows don’t
contain start or finish.

Thus we only have to deal with the case when the start is in
the top two rows, and the finish is not in top three rows
(remember that n is not too small).

We can reduce to the previous case by erasing the top two
rows and find the answer recursively on the (n − 2)×m grid,
with the start point chosen among the third row in a suitable
way.

The same construction applies when m ≥ 7. If both n and m are
small, we can simply perform brute-force. It is true that the answer
exists whenever n,m ≥ 4 and the parity condition is satisfied.

Competition Jury AMPPZ problems analysis 2016 (Moscow ACM ICPC Workshop edition)

B – Home Alone: Johnny Lost in New York (Pawe l
Gawrychowski)

The same trick also works if the bottom two rows don’t
contain start or finish.

Thus we only have to deal with the case when the start is in
the top two rows, and the finish is not in top three rows
(remember that n is not too small).

We can reduce to the previous case by erasing the top two
rows and find the answer recursively on the (n − 2)×m grid,
with the start point chosen among the third row in a suitable
way.

The same construction applies when m ≥ 7. If both n and m are
small, we can simply perform brute-force. It is true that the answer
exists whenever n,m ≥ 4 and the parity condition is satisfied.

Competition Jury AMPPZ problems analysis 2016 (Moscow ACM ICPC Workshop edition)

B – Home Alone: Johnny Lost in New York (Pawe l
Gawrychowski)

Complexity

A straightforward implementation that rotates, flips and pastes the
path pieces works in O((n + m)3).

We need to do faster! The hardest part is to flip and rotate the
path pieces.

Better structure

We can store the path as a list of commands like “forward” or
“turn left”. Also introduce a command “reverse all further turn
directions”. Now flipping and pasting can be done in O(1).

The resulting solution works in O(n2).

Competition Jury AMPPZ problems analysis 2016 (Moscow ACM ICPC Workshop edition)

B – Home Alone: Johnny Lost in New York (Pawe l
Gawrychowski)

Complexity

A straightforward implementation that rotates, flips and pastes the
path pieces works in O((n + m)3).

We need to do faster! The hardest part is to flip and rotate the
path pieces.

Better structure

We can store the path as a list of commands like “forward” or
“turn left”. Also introduce a command “reverse all further turn
directions”. Now flipping and pasting can be done in O(1).

The resulting solution works in O(n2).

Competition Jury AMPPZ problems analysis 2016 (Moscow ACM ICPC Workshop edition)

B – Home Alone: Johnny Lost in New York (Pawe l
Gawrychowski)

Complexity

A straightforward implementation that rotates, flips and pastes the
path pieces works in O((n + m)3).

We need to do faster! The hardest part is to flip and rotate the
path pieces.

Better structure

We can store the path as a list of commands like “forward” or
“turn left”. Also introduce a command “reverse all further turn
directions”. Now flipping and pasting can be done in O(1).

The resulting solution works in O(n2).

Competition Jury AMPPZ problems analysis 2016 (Moscow ACM ICPC Workshop edition)

B – Home Alone: Johnny Lost in New York (Pawe l
Gawrychowski)

Complexity

A straightforward implementation that rotates, flips and pastes the
path pieces works in O((n + m)3).

We need to do faster! The hardest part is to flip and rotate the
path pieces.

Better structure

We can store the path as a list of commands like “forward” or
“turn left”. Also introduce a command “reverse all further turn
directions”. Now flipping and pasting can be done in O(1).

The resulting solution works in O(n2).

Competition Jury AMPPZ problems analysis 2016 (Moscow ACM ICPC Workshop edition)

