AIM Tech Open Cup
Dolgoprudny,

Problem Tutorial: “Virus’

Consider we have z cells in the beginning, so the overall perimeter of the infected area is no more than 4zx.
When the cell gets infected because of at least two infected neighbors, the total perimeter of the infected
area doesn’t increase, because at least two edges become internal, and at most two edges surrounding the
new cell can lie on the border. In the end perimeter must be 2(n+m), so 4z > 2(n+m) and z > [25™].

We can reach this answer using the following construction: infect cells (1,n — 2i) for i = 0,1,..., 2]
and cells (m — 2i,1) for i = 0,1,..., ™2 |. Then after the first milliseconds all cells in the first row and
in the first column will be infected. After all cells in the second row and in the second column will be

infected, and so on. We used |74 | 4+ |2+ | cells, one can check that it is always equal to [2£™7].

Problem Tutorial: “Expected length of the minimum cycle”

Assume we have some permutation p. Consider the following algorithm: take the minimal element which
is not chosen yet, write down the length of the cycle it lies in, and throw away all elements of the cycle.
Consider we obtain a sequence of lengths of the cycles ay,as,...,a; after this algorithm. What is the
probability of a random permutation p to generate such a sequence?

Let’s count the number of such permutations at first. We can choose the first cycle of length a; containing
Lin C*7'- (a1 — 1)! ways (we choose the remaining elements of the cycle and then fix their order in the
(=Dl (p—1)-(n—2)-...-(n—a1 +1).

(n—a1)!

cycle). This is equal to

Now we have the remaining (n —a1) elements and need to build a cycle containing the minimal remaining
element. By the same argument, number of ways to doitis (n—a;—1)-(n—a; —2)-...-(n—a1 —ag+1).
Extending this argument further, we get that the number of such permutations is equal to

n=1)-...-(n—a1+1)-(n—a1—1)-...-(n—a1—ag+1)-(n—ay—azg—1)-...-(n—a; —ag—...—ap+1),
which is equal to

n! n!

n-(m—ay))-(n—ay—ag) ...-(n—ay—ag—...—ap_1) ap-(ap+ap_1) ... (a1 +as+...+ag)
So the probability is equal to

1
ak-(ak+ak_1)-...-(a1+a2+...+ak)’

Let’s now fix 1 < x < n so that all a; > x and calculate the sum of all such fractions — ¢,. If we have
these values, we can simply calculate the answer:

n
E(minimal _cycle) = Z x - P(minimal _cycle = z) =
=1
n n n
= Z P(minimal _cycle > x) = Z P(all cycles > x) = qu.
=1 =1 =1
k
How to calculate ¢,? Let’s use dynamic programming dp[m] — the sum of such fractions that > a; = m
i=1
and a; > x. Then the formula is:

m

dplm] = i: dpli]
=0

So we can calculate the dp array and also the array of its prefix sums to obtain the answer for the next m
in O(1). For a fixed n we use O(n) to calculate dynamic programming, so the overall complexity is O(n?).
Note that we need to precalculate the inverse elements of numbers 1,2,...,n in the Z, field so that we
can divide by m in O(1) in the formula of dp[m] calculation.

Page 1 of 5

AIM Tech Open Cup
Dolgoprudny,

Problem Tutorial: “Antipalindrome”

Note, that if there’s palindrome of length n, then there’s palindrome of n — 2 so it’s enough to build a
string that doesn’t contains palindromes of length 2 and 3.

Cases with £k = 1 or k = 2 may be solved separately.

Dynamic programming in O(NK?): State: dp[i][last character][prev_character] = minimalost is
minimal cost to replace first ¢ characters such that i-th one is replaced is last character, and i — 1-
th is replaced by prev_character. To calculate bruteforce p - ¢ — 2-th character, that is not equal to
last _character and prev_character and choose miminal dp[prev_character][p| + cost[s[i]][p]

Now, dynamic programming in: O(NK?) it’s not important what prev_character exactly, it’s needed
only to save two best options of prev_character.

Now, note that each character may be replaced only to one of the 5 cheapest choices because in optimal
answer there’s only 4 restrictions (2 characters to the left and to the right), so we got DP in O(N %5 % 5)

Some teams also got accepted with O(N %5 %5 % 5) (only second optimization)

Problem Tutorial: “Long Nim”

It’s known that second player wins if and only if a; @ ... ® a, = 0. We will prove that if a;..;; = 0 than first
player can force game to last) ;" ja; turns. Suppose that k is maximal such that all 2¥|a; and choose
such 7 that 2¥*1 does not divide a; and remove 1 stone. Now second player have to make such a turn so
that a; is xored by 2¥"!1 —1 (k-+1 ones in binary). If 271|a; then a; & 2¥*! > a; and turn is impossible.
If 281 doesn’t divide a; then a; @ 2kt — a; — 1 because k is chosen to be maximal. So, second player
have to remove only one stone to win. So, second player may force all turns to be ones.

Now, if a; @ ... ® a,, # 0, then first player want to make maximal first turn such that he wins (so xor
becomes 0) and it minimizes sum. We may choose such turn iterating over all heaps.

Problem Tutorial: “Guess Table”

At first lets find any row in a matrix. We will find a row in a two steps:

1. Lets start from empty string and add symbol ’0’ at the end and make a query. If the answer is 0
then lets change last symbol by ’1’ and try one more time. If the answer is 0 then the first step is
finished. Otherwise we increased current string length by one.

2. Lets add symbol ’0’ at the start of the string. Similarly of case 1) if the answer to the query is 0
then lets change the first symbol by ’1’ and try again. If the answer again is 0 the second step is
also finished. Otherwise we incresed current string length by ony.

Easy to see that this two steps will give us some string from guessed matrix with no more than 2 - n
queries.

Now lets find the first column. We will to that also in two steps:

1. Lets add a string with first symbol 0" and other symbols ’?’ to the bottom of the current table and
make a query. If the answer is 0 lets change '0’ by '1” and try again. If the answer is also 0 lets stop
the first phase. Otherwise we found another symbol in the first column.

2. Lets add a string with first sumbol '0” and other symbol ’?’ to the top of the current table and make
a query. If the answer is 0 again lets change 0’ by ’1’ and try again. If the answer is 0 the second
phase is finished. Otherwise we found another symbol in the first column.

Easy to see that after this two steps we will get a table with guessed some string, first column and question
marks in other position. Also easy to see that we will use no more than 2 - m queries for that.

Page 2 of 5

AIM Tech Open Cup
Dolgoprudny,

At last lets find other symbol straightforwardly: we will try symbol ’0’ at each position and if the answer
is 0 lets change it by '1’. Easy to see that we will get the answer in after another (n — 1)(m — 1) queries.

So totally we will get the answer in (n + 1)(m + 1) queries.

Problem Tutorial: “Restrooms’’

Suppose we've already placed first ¢ restrooms, did’t fail any request yet and the restroom at position i is
for men. Then we have only unsatisfied requests for men’s restrooms with left border > i+1 and unsatisfied
requests for women’s restrooms with right border > ¢ + 1. All requests for women’s restrooms with left
border < i will be satisfied iff request with the smallest right border will be satisfied. Therefore among
all placements of the first ¢ restrooms with ¢-th men’s restroom we are interested only in the placement
which maximizes the smallest right border of unsatisfied requests for women’s restrooms. We can now
write dynamic programming solution with state (prefix length, last restroom gender) containing largest
position when we must place restroom of the opposite gender. Using this states of dynamic programming
it’s easy to restore the answer.

Problem Tutorial: “Flying Doors”

Fix some h and v and the order of doors. When Kostya flies through coordinate 4, the position of the i-th

door is a; + %2, So, the condition of Kostya’s win is

v

bi i

h <a;+

foralli=1,2,...,n.

Consider these doors as lines in coordinates (%, h). Then all possible h are those that there exists some
point (%, h) such that all lines are upper than this point. In particular, this implies that the set of winning
heights for Kostya is always some segment [0; hg].

How to find this hg? Let’s do a binary search on it, assume our guess is g. If there exists some i that
b; = 0,a; < g, this g is more than hg. Consider (a, b) such that b > 0. If it has number 7 in the final order,
than is gives the condition on the velocity which Kostya chooses for the height g:

b-1 1_g—a

g<a+— - > —.
v b1

<

Similarly, if b < 0, we have the condition:

b-1i 1 g-—a
g<a+—=-< —.
) v b-i

Note that if a < g for some b < 0, then ¢ is more than hg too.

So Artem’s aim is to make

—a . g—a
max — > min —,
b<0 b-1 b>0 b-1
or, the same
a—g . g—a
max > min

b<0 —b-i~ >0 b-i

To maximize the left part, we should take the maximum “=¢ with b < 0 and take i = 1 for it. To minimize

the right part, we should take the minimum 93% with b > 0 and take i = n for it. In this case the other
doors are not important, because only these two doors can give Artem the desired condition.

So the solution is as follows: make the binary search, find these two doors which should be arranged
first and last, if the desired condition is satisfied, then Kostya will not win for this g. The complexity is
O(n -logC).

Page 3 of 5

AIM Tech Open Cup
Dolgoprudny,

Problem Tutorial: “MIPT Campus”

Consider one student going from dormitory at point a to study building at point b. If @ > b, we can
swap a and b, the answer to the problem will not change. If there exists a crosswalk inside segment [a; b],
then this student needs to go b — a meters, otherwise consider the crosswalk at point x closest to this
segment (it can be either to the left of the segment or to the right of the segment). Then student has to
go (b—a)+2-dist(x, [a; b]) meters. This z can be found using the binary search. So we can find the initial
sum of distances in O(nlogm).

For students who doesn’t have a crosswalk inside their segments we can decrease the distance they
have to go. If we build a crosswalk closer to the segment than this closest z, we have a profit of
(dist(x, [a; b]) — dist(y, [a;b])). Let d = dist(x, [a;b]). Then building a crosswalk at point y inside [a — d; a)
gives profit 2(y —a+d), inside [a; b) gives profit 2d, inside [b; b+ d) gives profit 2(b+d —y). We can rewrite
this events in form: on segment [u;v) add a linear function p - y + ¢, and after that find y with maximal
value, in which we will build a new crosswalk. Note that since all functions are linear, the maximum
will be reached in the end of some event segment. This problem is solved using sweep line: for each such
segment [u;v) make two events: add from wu value p -y + ¢ and add from v value —p -y — ¢. Now go from
left to right accumulating this events in the form of linear function and check its values in each coordinate
which has an event starting in it. The overall complexity of the solution is O(nlog (nm)).

Problem Tutorial: “Tickets”

Let’s construct a graph, such that he distance from each vertex to the capital would be exactly the needed
distance. After we constructed such graph, we can use Dijkstra algorithm to calculate all the distances
and process all queries afterwards.

The most obvious solution would be the following: for each ticket (v;, k;, w;) construct the edges too all
vertices u such that dist(u,v;) < k; with cost w;. However, the number of edges would be up to O(V?)
and this solution would be too slow in such case.

Let’s construct the graph more carefully. We need to add the edges from vertex v; to all the vertices v no
further than k;. Let’s perform Divide-And-Conquer on tree approach.

We iterate though all the layers in Divide-And-Conquer, let’s fix one of them with vertices V' and root
vertex root. In this layer, let’s add all the edges from v € V to all the vertices u such that root € path(v, u).

We can sort all the vertices v in increasing order by dist(root,v). It’s easy to see that for each ticket
(vi, ki, w;) we need to add edges from vertex v; to all vertices u such that dist(root,u) < k; —dist(root, v;).
That means, we need to add edges from v; to some prefix in the sorted list.

To do that, we add |V| vertices, distance of each of them represent minimum on prefix in sorted list. That
means, let the sorted vertices list be sorted; and additional vertices list be additional;. Then, we add edge
from additional; to additional;_1 with price 0 and from additional; to sorted; with price O.

To add the edges with cost w; to some prefix sorted;, sorteds, ..., sorted, we can just add a single edge

to additionaly. The total count of additional vertices in O(N log N) and total number of edges in also
O(NlogN).

Total complexity is O(N log? N), solution uses O(N log N) memory.

Problem Tutorial: “Total control”’

Let S,ld be the square of the initial polygon and S.xt be the square of the extended polygon. If Syld > S
then answer is 0.

Consider one edge of length [and polygon extension along this edge. The extended area is a rectangle
[x d. So the extended area along all edges is a sum of areas of rectangles: perimeter x d. Then consider
extension around vertices. It is easy to see that these parts are sectors of a circle, moreover the sum of all
these sectors is a full circle with area 7 x d2.

So Sext = S,ld + m x d? + perimeter x d. We can solve quadratic equation or binary search to find d.

Page 4 of 5

AIM Tech Open Cup

Dolgoprudny,
Problem Tutorial: “Mobius”
Firstly calculate using Eratosthenes-like routine mobius functions for all numbers 1,...,10%. Then

remove from arrays the numbers with zero mobius function, they make contribution only in k¢ and
this contribution could be easily calculated. Further we consider arrays a and b free of values with zero
mobius function.

Assume kg is number of pairs (a;, b;) having common prime number. In other case p(a;-b;) = p(a;) - 1(b;).
Consider all 4 cases of pairs of values f(a;), 11(b;), for each case one could calculate number of zeros i(a;-b;)
and subtract it from &y (q,).u(b;)- SO we reduced problem to calculation of number of pairs (af, bg) having
common prime divisors (array a” is part of array a having u(a;) = z). It could be done using inclusion-
exclusion formula and Eratosthenes-like routine:

106
Z w(d) - entgz(d) - entpy (d),
d=1

where entqe (d) — number of elements of a® divisible by d, entyy (d) — number of elements of bY divisible by
d.

Page 5 of 5

