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A. Sieve It!

Use the linear Eratosthene’s sieve to find minimal prime divisors of all numbers.
The use the following formulas for n = pα1
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B. Cabbages Under Hyperbola

The number of rectangles with rightmost x = xr is
xr(bn/xrc(bn/xrc+ 1)/2),
so the total number of rectangles is∑n

x=1 x(bn/xc(bn/xc+ 1)/2)
This sum be computed in O(

√
n ) by grouping summands with bn/xc = k <

√
n ,

and counting all the rest explicitly.

C. Coprime Tuples

By inclusion-exclusion, the answer is
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Compute M(n) along with all M(bn/kc) in O(n2/3), then find the sum in O(

√
n ).

D. Count The Semiprimes

The answer is
∑

pj6
√
n π(bn/pjc) − j. Note that the O(n2/3(log n)1/3) method of

counting π(n) also allows to obtain all π(bn/xc), given all the needed queries will be
preprocessed. Perform preliminary calculation of dpn/pj ,k for all pj <

√
n to make sure

that queries will be preprocessed. Total complexity does not change.
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