
XVIII Open Cup named after E.V. Pankratiev
Stage 4: Grand Prix of SPb, Sunday, October 15, 2017

Problem A. Base i− 1 Notation
Input file: base-i-1.in

Output file: base-i-1.out

Time limit: 2 seconds
Memory limit: 256 mebibytes

Gaussian integer is a complex number of the form a+ b · i, where a and b are integers, and i is the square
root of −1.

Let us say that a gaussian integer a+ b · i is written in base i− 1 notation in the form cncn−1 . . . c1c0i−1

if a + b · i =
n∑

k=0

ck · (i − 1)k, and all ck ∈ {0, 1}. Additionally, if n ̸= 0, then cn ̸= 0. An amazing fact is

that, for any Gaussian integer, this form exists and is unique.

For example, 1 = 1i−1, −1 = 11101i−1, 2i+ 1 = 1111i−1.

You are given two gaussian integers written in base i − 1 notation. Calculate their sum and print it in
base i− 1 notation.

Input
The first line contains the number a, the second one contains the number b. Both of them are written in
base i− 1 notation, and each consists of no more than 500 000 digits.

Output
Print the sum of the two given numbers, also written in base i− 1 notation.

Examples
base-i-1.in base-i-1.out Notes

101

10

111 a = 1-2*i

b = -1+1*i

a+b = 0-1*i

10100100100

110101

11111001100001 a = 20-38*i

b = 1-6*i

a+b = 21-44*i

Problem A Developer: Pavel Kunyavskiy Page 1 of 19

XVIII Open Cup named after E.V. Pankratiev
Stage 4: Grand Prix of SPb, Sunday, October 15, 2017

Problem B. Squaring a Bit
Input file: bit-squares.in

Output file: bit-squares.out

Time limit: 2 seconds
Memory limit: 256 mebibytes

You are given an integer n. Consider its binary representation without leading zeroes (for example,
1010 = 10102). In how many ways can you rearrange its binary digits so that the resulting number is a
perfect square? For example, for 1010 = 10102, there is only one way: 10102 → 10012 = 9 = 32. It is not
allowed to rearrange the bits so that the result contains leading zeroes and that the result exceeds 1018.

Input
The only line of the input contains a single integer n (1 ≤ n ≤ 1018).

Output
Print an integer: the number of ways to rearrange bits of n in such way that the result is a perfect square.

Examples
bit-squares.in bit-squares.out

9 1

10 1

2 0

1000000000000000000 12206114

Problem B Developer: Artur Riazanov Page 2 of 19

XVIII Open Cup named after E.V. Pankratiev
Stage 4: Grand Prix of SPb, Sunday, October 15, 2017

Problem C. Chickens
Input file: chickens.in

Output file: chickens.out

Time limit: 2 seconds
Memory limit: 256 mebibytes

Where do baby chickens come from? Probably you have already asked yourself this question. Maybe you
have read the answer in a book. But, as the saying goes, one look is worth a thousand words.

In this problem, we are concerned with a specific kind of a matryoshka doll: the broody hen doll. This
toy consists of several parts:

• The outer doll is the hen itself.

• n eggs, indexed from 1 to n. Each egg can be opened so one can put something inside.

• n baby chickens, indexed from 1 to n. Ain’t no one disassembles a baby chicken. No one.

The doll is considered assembled if each baby chicken is placed inside an egg, and each egg is placed inside
the hen. It is not allowed to place an egg inside another egg, place several baby chickens in the same egg,
or not to put a baby chicken in any egg at all.

Each baby chicken has a size ci (1 ≤ i ≤ n). Similarly, each egg has a size as well ej (1 ≤ j ≤ n). One can
place a baby chicken i inside an egg j if and only if ci ≤ ej .

Your task is to calculate the number of ways to assemble the doll, that is, the number of ways to place
each baby chicken inside an egg. Two ways are considered different if there is a baby chicken which is
placed in eggs with different numbers in these ways.

Input
The first line of the input contains a single integer n, the number of baby chickens and eggs (1 ≤ n ≤ 12).
The second line contains n integers c1, c2, . . . , cn separated by single spaces: the sizes of the baby chickens
(1 ≤ ci ≤ 100). The third line contains n integers e1, e2, . . . , en separated by single spaces: the sizes of the
eggs (1 ≤ ei ≤ 100).

Output
Print a single integer on the only line of the output: the number of ways to put baby chickens into eggs.

Examples
chickens.in chickens.out

3

1 2 3

3 3 1

2

4

1 1 1 1

100 100 100 100

24

4

100 100 100 100

1 1 1 1

0

10

1 2 3 4 5 6 7 8 9 10

2 3 4 5 6 7 8 9 10 11

512

Problem C Developer: Egor Suvorov Page 3 of 19

XVIII Open Cup named after E.V. Pankratiev
Stage 4: Grand Prix of SPb, Sunday, October 15, 2017

Problem D. Lights at a Crossing
Input file: crossing-lights.in

Output file: crossing-lights.out

Time limit: 2 seconds
Memory limit: 256 mebibytes

Petya the Robot sits in his company’s new office and remotely drives several robo-taxis. From time to
time, when all taxis stop, he glances through the window at the street crossing by his office. There are n
traffic lights at the crossing visible to Petya. The traffic lights are somewhat special. Each can display only
two colors: red and green. When the signal is red, the traffic light additionally shows a positive integer:
the number of seconds before the signal turns green. When the signal is green, no numbers are shown.
The readings on all traffic lights change simultaneously once a second.

Petya the Robot knows that all traffic lights at the crossing are parts of one system. The system has a
period of T seconds: if one looks at the lights twice with the time gap of exactly T seconds, all readings
are the same. During this period, the signal of each traffic light changes exactly twice: the light i is green
for Xi consecutive seconds and then red for Yi = T −Xi consecutive seconds. Additionally, each second,
there is at least one light which is red. Still, Petya does not know the exact value of T , as well as the
values Xi and Yi for each traffic light, he only knows the system’s basic functioning principles described
above.

Petya the Robot wants to know the period T . Robots generally have good memory, and Petya remembers
the results of m observations: each time he glanced through the window, he memorized the readings on
all n visible traffic lights. Help him find the exact value of T , or determine that it is impossible with the
given information.

Input
The first line of input contains integers n and m: the number of traffic lights at the crossing and the
number of observations (2 ≤ n ≤ 20, 2 ≤ m ≤ 250). The next m lines describe the observations. Each
of them contains n simultaneous readings of the traffic lights: the first, the second, ..., the last one. If a
traffic light is green, it is denoted as “X” (English capital letter “ex”). If a light is red, the readings are
expressed as a strictly positive integer: the number of seconds before the light turns green. Consecutive
readings on a line are separated by at least one space, and additional spaces may appear before each
reading to improve readability.

It is guaranteed that the traffic lights at a crossing are behaving as described in the statement. As for the
numbers T , Xi, and Yi, Petya knows for sure that they are strictly positive integers. Additionally, Petya
knows that there is a lower limit on Xi and Yi which is around 10 seconds, and there is an upper limit
on T which is around 200 seconds, but he does not know the exact bounds: they may be actually a few
seconds more or less than stated.

Output
If the given information allows to determine the exact value of T , print this number. Otherwise, print the
number −1.

Problem D Developer: Ivan Kazmenko Page 4 of 19

XVIII Open Cup named after E.V. Pankratiev
Stage 4: Grand Prix of SPb, Sunday, October 15, 2017

Examples
crossing-lights.in crossing-lights.out

4 5

X 33 X 36

X 4 X 7

42 2 42 5

X 21 X 24

8 X 8 54

83

2 2

X 100

100 X

-1

Explanations
In the first example, Petya the Robot sees four traffic lights. The actual parameters of the system are the
following. The period is 83 seconds. The first and the third traffic lights work identically, they turn green
for 40 seconds and red for 43 seconds. The second light turns green 43 seconds after the first one turns
green and stays green for 36 seconds. The fourth light turns green 46 seconds after the first one and stays
green for 29 seconds.

The observations are made 10, 39, 41, 22, and 75 seconds after the moment when the first traffic light
turns green. It turns out that these observations allow to uniquely determine the period.

In the second example, there are only two lights and two observations. The observations show that the
period is at least 200 seconds. Still, it can actually be any integer greater than 200, and Petya the Robot
does not know the exact upper bound on the period. So, the number T can not be uniquely determined.

Problem D Developer: Ivan Kazmenko Page 5 of 19

XVIII Open Cup named after E.V. Pankratiev
Stage 4: Grand Prix of SPb, Sunday, October 15, 2017

Problem E. Decimal Form
Input file: decimal-form.in

Output file: decimal-form.out

Time limit: 2 seconds
Memory limit: 256 mebibytes

Consider coprime integers a and b (0 ≤ a < b ≤ 109). You are given a
b in the form of decimal fraction,

rounded up to precisely 18 digits after the decimal point. In this problem, numbers are always rounded to
the nearest decimal fractions, and in case of a tie, the number is rounded up. Find the integers a and b.

Input
The first line contains an integer n, the number of test cases (1 ≤ n ≤ 104). The next n lines describe
test cases. Each of them contains a decimal fraction with exactly 18 digits after the decimal point. It is
guaranteed that each decimal fraction was obtained in the way described above.

Output
Output n lines. The i-th line must contain integers a and b (0 ≤ a < b ≤ 109) used to generate the i-th
test case.

Example
decimal-form.in decimal-form.out

2

0.000000000000000000

0.666666666666666667

0 1

2 3

Explanation
In the first test case, 0

1 = 0.

In the second test case, 2
3 ≈ 0.666 666 666 666 666 667.

Problem E Developer: Stanislav Ershov Page 6 of 19

XVIII Open Cup named after E.V. Pankratiev
Stage 4: Grand Prix of SPb, Sunday, October 15, 2017

Problem F. Martian Maze
Input file: standard input

Output file: standard output

Time limit: 2 seconds
Memory limit: 256 mebibytes

This is an interactive problem.

A research robot on Mars is going to another maze. The maze is a flat rectangular field aligned with the
cardinal directions and divided into h×w squares. Between each pair of squares which share a side, there
is either a passage or a wall. A solid wall surrounds the field.

The robot starts at the southwestern corner square of the maze. The robot’s goal is to arrive at the
northeastern corner square of the maze. Each second, we can issue a command to the robot, so that it
moves to the neighboring square in one of the four cardinal directions: “N” (north), “W” (west), “S” (south),
or “E” (east). Next, the robot either carries out the command if there is a passage in the respective direction,
or stays in place if a wall prevents the movement. After that, the robot will send a response: “yes” if the
move was successful, or “no” in the other case.

The communication is carried out via a satellite network and, depending on the positions of Phobos and
Deimos, the delay between issuing a command and getting the response may be significant. In the near
future, the delay is constant and equal to d seconds. This means that the response to the command
number x can be received right after issuing the command number x + d. However, a sand storm will
start shortly: after t = 10 000 seconds, sending commands will be no longer possible, only the responses
to previous commands can be received at that time.

Take control over the robot and help it achieve the goal before the storm makes it impossible.

Interaction Protocol
Firstly, your program is given three integers, h, w, and d, on a separate line: the number of squares
from north to south, the number of squares from west to east, and the delay in seconds (2 ≤ h,w ≤ 20,
0 ≤ d ≤ 100). In each test, the maze is fixed in advance but kept secret.

In the robot’s world, the following events happen each second.

1. If the number of already printed commands is less than t, your program must print the next
command, “N”, “W”, “S”, or “E”, on a separate line. You can not skip a command and can not order
to stand in place.
To prevent output buffering, flush the output buffer after each request: this can be done by using,
for example, fflush (stdout) in C or C++, System.out.flush () in Java, flush (output) in
Pascal or sys.stdout.flush () in Python.

2. If the number of already printed commands is more than d, your program must read the response
to the command issued d seconds ago. Normally, the response will be “yes” or “no” which states
whether the corresponding move was successful. However, if after the move, the robot achieved the
goal, instead of “yes”, the response will be “success”: in this case, all remaining commands will be
ignored, and the program must immediately terminate gracefully. Finally, if after the last possible
command, the robot did not achieve the goal, the response will be replaced by “timeout”, and the
solution will get “Wrong Answer”.

It is guaranteed that the maze in each test is constructed as follows. First we put a solid wall around the
field. After that, we consider all possible walls between pairs of neighboring squares of the maze: h ·(w−1)
walls going from west to east and (h− 1) ·w walls going from north to south. We then fix a random order
of these possible walls and consider them in this order. Each possible wall will be put into the maze if,
when the wall is present, each square of the maze is still reachable from all other squares. One can prove
that the result will be such a maze that there is a unique path between each pair of squares which does
not visit any square twice.

Problem F Developer: Ivan Kazmenko Page 7 of 19

XVIII Open Cup named after E.V. Pankratiev
Stage 4: Grand Prix of SPb, Sunday, October 15, 2017

Examples
standard input standard output Maze

2 3 0

no

yes

no

yes

success

W

E

E

N

E

+-+-+-+

| | |

+ + + +

| | |

+-+-+-+

4 3 2

yes

yes

yes

yes

success

N

N

E

N

E

W

W

+-+-+-+

| | |

+ + +-+

| | |

+ + + +

| | | |

+ +-+ +

| |

+-+-+-+

Problem F Developer: Ivan Kazmenko Page 8 of 19

XVIII Open Cup named after E.V. Pankratiev
Stage 4: Grand Prix of SPb, Sunday, October 15, 2017

Problem G. Wet Mole
Input file: mole.in

Output file: mole.out

Time limit: 2 seconds
Memory limit: 256 mebibytes

Young mole named Friedrich just relocated to the comfortable hole inside Flower Hill. He barely unpacked
his belongings, and was about to hang the portrait of his molaunt on the wall, when the sky suddenly
filled with dark clouds. Rain will start any second! It will be unfortunate if the portrait of aunt will get
wet, so it is necessary to find a place in the hole where rainwater won’t get to.

As you may know, moleholes of Flower Hill are digged up in vertical rectangle shapes: every hole is h
moleters (mole unit of length) deep and w moleters wide. There is no third dimension in economy-class
moleholes, so that neighbouring moleholes don’t intersect with each other. Every 1× 1 square moleter is
either empty of filled with dirt.

When it is raining, water drops from the upper side and fills every empty square in top level of molehole,
then flows down and sideways. Formally: if a square has water and a square one moleter below is empty,
the water will also fill this empty square. And in case the square below is filled with dirt, but the cells one
moleter to the left or to the right are empty (one or both), the water will fill these empty squares, too.

You are given Friedrich’s molehole map: an h× w rectangle of dirt or empty squares. You have to find a
square wich will not be filled with water, or complain that there is no such square. Of course, it is only
possible to hang the portrait in an empty square, not dig it into the dirt.

Input
The first line of input contains two positive integers: h and w. Each of the next h lines contains w
characters: the molehole map from top to bottom. Each character is either “.” (empty) or “#” (dirt).
Molehole is no more than 500 moleters in each dimension. It is guaranteed that the bottom level of the
molehole has no empty squares.

Output
On the first line, print “Yes” in case you found a suitable square, or “No” otherwise. If you found a square,
additionaly output h lines, each containing w characters: the map of molehole in the same format as in
input, but place character “X” in the square suitable for the portrait. If there are multiple suitable squares,
mark any one of them.

Problem G Developer: Олег Давыдов Page 9 of 19

XVIII Open Cup named after E.V. Pankratiev
Stage 4: Grand Prix of SPb, Sunday, October 15, 2017

Examples
mole.in mole.out

4 6

#.##.#

#.#.##

#...##

######

Yes

#.##.#

#.#X##

#...##

######

5 6

#.#.##

#.#.##

#....#

###.##

######

Yes

#.#.##

#.#.##

#...X#

###.##

######

5 5

..##.

.##..

.#..#

...##

#####

No

20 30

.....#..############....##....

.###...###########...#.##...##

..###..###########.###....####

#..#.....#########...###....##

##.#.###..#...######..##.##..#

##.#....#####..######.##.###..

##..###...####........##.####.

###.#####....#####.#####...##.

###......###........######....

########.########.#........###

########..#######..#..########

#########.########.##....#####

#######...########...###..####

#######.############.####.....

#######...##########..#######.

#########..##########........#

##########.#################..

##########...################.

############.################.

##############################

Yes

.....#..############....##....

.###...###########...#.##...##

..###..###########.###....####

#..#.....#########...###....##

##.#.###..#.X.######..##.##..#

##.#....#####..######.##.###..

##..###...####........##.####.

###.#####....#####.#####...##.

###......###........######....

########.########.#........###

########..#######..#..########

#########.########.##....#####

#######...########...###..####

#######.############.####.....

#######...##########..#######.

#########..##########........#

##########.#################..

##########...################.

############.################.

##############################

Problem G Developer: Олег Давыдов Page 10 of 19

XVIII Open Cup named after E.V. Pankratiev
Stage 4: Grand Prix of SPb, Sunday, October 15, 2017

Problem H. Oddities
Input file: oddities.in

Output file: oddities.out

Time limit: 2 seconds
Memory limit: 256 mebibytes

Jack is arranging a party. He owns the best nightclub in town with n rooms and m bidirectional corridors
running between them (a corridor connects two distinct rooms). The nightclub is connected: there is a
path via corridors between any two rooms. We will say that G is the corresponding connected graph with
vertices as rooms and corridors as edges.

Jack wants the party to be awesome and odd at the same time, so he decides to destroy some of the
corridors between rooms. He wants to do that in such a way that, for each i, the oddity (the value modulo
2) of the number of remaining corridors adjacent to room i is equal to a fixed number ai ∈ {0, 1}. You may
notice that the word “parity” mathematically means the same thing as “oddity”; the latter just sounds
better for the party. So, Jack asked his friend John, who is a computer science student, to find a way to
destroy the corridors.

John worked hard for two weeks without any success. He found out that
(

n∑
i=1

ai

)
mod 2 = 1, and he

proved that this implies that there is no way to satisfy Jack’s requirements. Jack was very upset when he
heard that. He said that John’s proof was garbage and that John better found a hard proof in five hours.
John was wise enough and didn’t ask Jack what happens in five hours, so he went straight to you and
begged for help.

First of all, you should understand what constitutes a hard proof in Jack’s terms. Jack wants the proof to
be formal, and that means it should involve formulas, more than that, logical formulas in CNF (conjunctive
normal form). A formula in CNF is a conjunction (logical and) of a finite number of clauses. A clause is
a disjunction (logical or) of a finite number of literals. A literal is either a variable (like Y) or a variable’s
negation (like ¬Y). Each variable can have a value of either zero (logical “false”) or one (logical “true”).
For example, a clause may look like x ∨ y ∨ ¬z. Thus a formula in CNF can look like (x ∨ y) ∧ (¬y ∨ z).

Let L(φ) be the set of all variables which occur in formula φ and their negations. For example,
L((x ∨ z) ∧ ¬y) = {x, y, z,¬x,¬y,¬z}. Now, we call a bijection π : L(φ) → L(φ) an automorphism
if two conditions hold:

• For each literal x: π(¬x) = ¬π(x) (here we assume that ¬¬α = α).

• If we replace all literals in φ with their images in π simultaneously and obtain a formula π(φ), then
π(φ) is the same as φ up to the order of clauses and literals inside each clause.

For example:

• x has only one automorphism: the identity function.

• x ∨ ¬y has two automorphisms: one is the identity function, and the other maps x to ¬y, ¬x to y,
y to ¬x, and ¬y to x. The latter transforms the formula into ¬y ∨ x, which is equivalent to x∨¬y.

• (x ∧ x) ∨ y has only one automorphism: the identity function.

Jack calls a formula φ unsatisfiable if there is no assignment of values {0, 1} to variables such that the value
of φ after this assignment is 1. For example, the formula φ = x ∧ ¬x is unsatisfiable: φ

∣∣
x=0

= φ
∣∣
x=1

= 0.

Problem H Developer: Pavel Kunyavskiy Page 11 of 19

XVIII Open Cup named after E.V. Pankratiev
Stage 4: Grand Prix of SPb, Sunday, October 15, 2017

A hard refutation of a formula φ (in CNF) in Jack’s terms is a sequence of clauses C1, . . . , Ck such that
Ck = □ (□ stands for the empty clause which is always false) and for each i ∈ {1, . . . , k}, one of the
following conditions holds:

1. Ci ∈ φ, that is, Ci is one of the clauses of the initial formula.

2. Ci is obtained by resolution rule from two clauses Cj and Ck occuring earlier in the sequence (that
is, j, k < i). They must have a special form: Cj = A ∨ x and Ck = B ∨ ¬x for some possibly empty
clauses A, B and a variable x. If this is the case, then Ci is obtained as A ∨B.

Note that A and B can intersect (that is, have common literals).

For example, if we have clauses Cj = (x∨ y ∨ t) and Ck = (x∨¬y ∨ s)), we can get Ci = (x∨ t∨ s)
by applying the resolution rule for variable y.

3. There is a previous clause Cj (j < i) and an automorphism π of φ such that Ci = π(Cj). For
example, if φ = x ∨ ¬y, the only non-identity π which we can use here would rename x to ¬y and
so on (see above).

Let us define a formula ODDG in CNF which will be satisfiable if and only if it is possible to destroy some
corridors in the club to satisfy Jack’s requirements. It will have m logical variables e1, . . . , em which take
values from the set {0, 1}: ei = 0 if i-th corridor is destroyed and ei = 1 if it remains. Now let us encode
the fact that i-th room has a correct oddity. We denote the number of corridors from the room i as di,
and variables corresponding to these corridors as ci,1, . . . , ci,di (for eaxmple, ci,1 may be e4 if there is a
corridor from room i with number 4). Now, the room has the correct oddity if and only if it does not have
the wrong oddity. This fact can be written as a CNF formula with 2di−1 clauses, each clause containing
di literals. In the end, we get the following formula encoding the fact that a specific way of destroying
some corridors satisfies Jack’s requirements:

ODDG(e1, . . . , em) =
n∧

i=1

∧
s∈{0,1}di

(s1+...+sdi) mod 2 ̸=ai

 ∨
1≤j≤di
sj=0

ci,j ∨
∨

1≤j≤di
sj=1

¬ci,j

︸ ︷︷ ︸

true iff valiables ci,1...ci,di do not have values s1,...,sdi

Note that this formula is equivalent to
n∧

i=1

(ci,1 ⊕ . . .⊕ ci,di ⊕ ¬ai)

where ⊕ is exclusive or, but this one is not in CNF, so it can not be used directly in proof.

Find a hard refutation of ODDG containing no more than 1000 clauses.

Input
The first line of the input contains two integers: n and m (3 ≤ n ≤ 73, 0 ≤ m ≤ 492). The second line
contains n integers: a1, . . . , an (ai ∈ {0, 1}). The i-th of the next m lines contains the description of the
i-th corridor: two integers u, v ∈ {1, . . . , n}. Such line means that i-th corridor connects rooms u and v.

Two rooms can not be connected by more that one corridor, and a corridor cannot connect a room to
itself. It is guaranteed that it is possible to go via corridors between any two rooms.

Output
Whenever we need to describe a literal in a formula, integer t denotes the variable et, and integer −t
denotes its negation ¬et. Edges and corresponding variables are numbered from 1 to m in order of input.

Output must contain no more than 1000 lines. The i-th of these lines must describe clause Ci of the proof
and be in one of the following forms:

Problem H Developer: Pavel Kunyavskiy Page 12 of 19

XVIII Open Cup named after E.V. Pankratiev
Stage 4: Grand Prix of SPb, Sunday, October 15, 2017

• declare q l1 . . . lq if Ci will be one of the clauses of ODDg. Here, q must be the number of literals
in said clause, and l1, . . . , lq must be its literals. All literals listed must be distinct.

• resolve j k t. Corresponds to an application of the resolution rule. Here, j and k are numbers of
clauses to use in rule, and t is the variable used in rule. It must hold that 1 ≤ j, k < i, t ∈ {1, . . . ,m},
for some clauses A and B clause Cj must be equal to A∨ et, and Ck = B ∨¬et. Ci will be equal to
A ∨B.

• map j a1 . . . am. Corresponds to using the authomorpism rule. at must be the literals to which et
is mapped. The mapping et 7→ at, ¬et 7→ ¬at must be a valid automorphism of ODDG according to
the definition in the problem statement. Ci will be equal to π(Cj) where π is the mapping decribed
above.

Proof will be considered correct if and only if the last clause is empty.

Example
oddities.in oddities.out Notes

3 3

1 0 0

1 2

2 3

1 3

declare 2 -2 1

declare 2 2 -3

resolve 2 1 2

map 3 -3 -2 -1

declare 2 -1 -3

resolve 4 5 1

map 6 -1 -2 -3

resolve 7 6 3

C1 = ¬e2 ∨ e1
C2 = e2 ∨ ¬e3
C3 = e1 ∨ ¬e3
C4 = ¬e3 ∨ e1
C5 = ¬e1 ∨ ¬e3
C6 = ¬e3
C7 = e3
C8 = □

Problem H Developer: Pavel Kunyavskiy Page 13 of 19

XVIII Open Cup named after E.V. Pankratiev
Stage 4: Grand Prix of SPb, Sunday, October 15, 2017

Problem I. Sorting on the Plane
Input file: standard input

Output file: standard output

Time limit: 2 seconds
Memory limit: 256 mebibytes

This is an interactive problem.

There are n vectors on the plane, they are all non-zero and pairwise non-collinear. The vector number i
goes from the origin to the point (xi, yi). But we won’t tell you these coordinates.

Instead, you can ask questions of the following format: “Is it true that vectors i and j form a right pair?”
Formally, vectors form a right pair if xi · yj > xj · yi. Geometrically, a right pair means that, if we stand
at the origin and look straight at the endpoint of vector i, then, in order to turn to the endpoint of vector
j as soon as possible, we have to turn in counter-clockwise direction.

You have to ask questions and arrive at one of the two possible outcomes:

1. All vectors lie in one semi-plane with its border passing through the origin. Then you have to sort
them: output a sequence of distinct indices i1, i2, . . . , in such that for every p < q, the vectors ip
and iq form a right pair.

2. There is no semi-plane such that its border passes through the origin and it contains all the given
vectors. Then you have to present a proof: output a sequence of distinct indices i1, i2, . . . , ik, where
each vector forms a right pair with the next one, except for the last one (ik) which forms a right
pair with the first (i1).

Interaction Protocol
Firstly, your program is given the number n on a separate line: the number of vectors (1 ≤ n ≤ 500). In
each test, the vectors are fixed in advance but kept secret.

After that, you can perform the following actions:

1. Ask the jury: “Is it true that vectors i and j form a right pair?”

In order to do that, your program must output a line in the following format: “? i j”. The indices
must be valid: 1 ≤ i, j ≤ n.

In response, the jury program will give one number on a separate line: 1 if the answer is “yes” and
0 if the answer is “no”.

To prevent output buffering, flush the output buffer after each question: this can be done by using,
for example, fflush (stdout) in C or C++, System.out.flush () in Java, flush (output) in
Pascal or sys.stdout.flush () in Python.

You can ask no more than 20 000 questions.

2. Output the answer. In this case, your program must output two lines.

If all vectors lie in one semi-plane, the first line must be “! YES”, and the second must contain n
space-separated distinct integers from 1 to n: the indices of vectors in sorted order.

If there is no such semi-plane, output “! NO” on the first line. The second line must start with an
integer k, the number of vectors in the proof, followed by a sequence of k distinct integers from 1
to n: the proof itself. If there are several possible proofs, output any one of them.

After printing the answer, your program must immediately terminate gracefully.

Problem I Developer: Kirill Simonov Page 14 of 19

XVIII Open Cup named after E.V. Pankratiev
Stage 4: Grand Prix of SPb, Sunday, October 15, 2017

Examples
standard input standard output

3

0

1

0

? 1 3

? 3 2

? 2 1

! YES

3 1 2

3

1

0

0

? 1 2

? 3 2

? 1 3

! NO

3 1 2 3

Problem I Developer: Kirill Simonov Page 15 of 19

XVIII Open Cup named after E.V. Pankratiev
Stage 4: Grand Prix of SPb, Sunday, October 15, 2017

Problem J. Center of List of Sums
Input file: sums-center.in

Output file: sums-center.out

Time limit: 4 seconds
Memory limit: 256 mebibytes

You are given two arrays a and b of same length n.

Consder all n2 possible pairwise sums ai+ bj and print them in non-decreasing order. Your task is to find
n numbers which are exactly in the middle of this list, that is, n elements of the sorted list with indices
from n·(n−1)

2 + 1 to n·(n+1)
2 . List elements are numbered staring from 1.

Input
The first line contains an integer n (n ≤ 2 · 105).
The second line contains n integers a1, a2, . . ., an (0 ≤ ai ≤ 109).

The third line contains n integers b1, b2, . . ., bn (0 ≤ bi ≤ 109).

Output
Print n integers: the middle of the sorted list of pairwise sums in their respective order.

Examples
sums-center.in sums-center.out

2

1 3

2 4

5 5

3

1 2 3

4 6 8

7 8 9

Explanations
In the first example, the sorted list of pairwise sums looks as follows: 3, 5, 5, 7.

In the second example, the list is: 5, 6, 7, 7, 8, 9, 9, 10, 11.

Problem J Developer: Pavel Kunyavskiy Page 16 of 19

XVIII Open Cup named after E.V. Pankratiev
Stage 4: Grand Prix of SPb, Sunday, October 15, 2017

Problem K. Cookies
Input file: word-chains.in

Output file: word-chains.out

Time limit: 4 seconds
Memory limit: 256 mebibytes

There were several cookies lying on a platter in a row. Each cookie was shaped as a lowercase English
letter, and together, the cookies formed an English word.

Eve approached the platter and ate one cookie. To keep it in secret, she arranged the remaining cookies
in such a way that they formed some other word. No one around noticed the difference. So Eve decided
to repeat her venture. And she repeated it several times. At the end, she had no possibility to take one
cookie and either arrange others to form a word or leave the platter empty.

Eve did not turn or flip the cookies, so a letter never turned into another letter. Eve consulted the
dictionary to be sure that she was using real words.

How could the platter look at different moments of time, assuming that Eve managed to eat the maximum
number of cookies?

You will have to solve the problem for several platters.

Input
The first line of input contains the number of test cases n (1 ≤ n ≤ 104). The next n lines contain words,
one word per line. Each word defines one initial state of a platter with cookies. The next line contains
the size of the dictionary: m = 173 554 words. Then follow m lines with dictionary words, one word per
line. The dictionary is the same for all inputs. It is the public domain word list ENABLE for word games
in English, slightly edited for this problem (one-letter words were added). The dictionary used in this
problem can also be downloaded separately here: http://acm.math.spbu.ru/171015/words.unix.txt
with Unix line endings or http://acm.math.spbu.ru/171015/words.windows.txt with Windows line
endings. It is guaranteed that all the initial words are contained in the dictionary. It is not guaranteed
that Eve can eat at least one cookie from each platter.

Output
Output n chains, each chain on two lines. The first of these lines must contain the length of the chain,
that is, the number of states in it. On the second line, output all the states of the platter in the chain.
Output each state either as the respective dictionary word or as a dot (“.”) if the platter is empty. The
states must be separated by the sequence of characters “ -> ”. See examples for better understanding of
the output format.

In case there exist multiple chains of maximal length for a given initial word, output any one of them.

Problem K Developer: Natalya Ginzburg Page 17 of 19

XVIII Open Cup named after E.V. Pankratiev
Stage 4: Grand Prix of SPb, Sunday, October 15, 2017

Example
word-chains.in word-chains.out

5

university

championships

open

cup

cookie

173554

a

aa

aah

...

zyzzyva

zyzzyvas

11

university -> intrusive -> neuritis ->

unities -> seniti -> nisei -> sine ->

sei -> es -> e -> .

2

championships -> championship

5

open -> one -> ne -> e -> .

4

cup -> up -> p -> .

1

cookie

Explanation
As you can notice, the dictionary is not fully present in the statement. To get a correct answer to the
example, replace the dictionary text with its complete version.

The output chain for the “university” test case is divided into three lines just for readability. In fact,
each chain must be printed on a single line.

Problem K Developer: Natalya Ginzburg Page 18 of 19

XVIII Open Cup named after E.V. Pankratiev
Stage 4: Grand Prix of SPb, Sunday, October 15, 2017

Problem L. Xor-fair Division
Input file: xorsep.in

Output file: xorsep.out

Time limit: 2 seconds
Memory limit: 256 mebibytes

Boys Arthur and Lyoshka found an array of non-negative integers A. As there was only one array, they
decided to divide the array elements between themselves so that each element of the array was given to
one of the boys and each boy took at least one element.

As the boys are very fond of the bitwise “xor” (
⊕

) operation, they decided to divide the array xor-fairly.
The division of the array A into two arrays B1 and B2 is xor-fair if⊕

x∈B1

x =
⊕
y∈B2

y.

Now, the boys are interested in the following question: in how many ways they can divide the array
xor-fairly? Two ways are considered different if there is at least one element that is given to different boys
in these two ways.

Input
The first line of the input contains an integer n, the length of the array A (1 ≤ n ≤ 50). The second line
contains n non-negative integers A1, A2, . . . , An: the elements of the array (0 ≤ Ai < 263).

Output
Output a single integer: the number of ways for Arthur and Lyoshka to divide the array A xor-fairly.

Examples
xorsep.in xorsep.out

3

0 1 2

0

2

1 1

2

Explanations
In the second example, there are two ways: Lyoshka can take the first element and Arthur can take the
second, or the other way around.

Problem L Developer: Anton Gulikov Page 19 of 19

