
XVIII Open Cup named after E.V. Pankratiev
Stage 13: Grand Prix of Saratov, Sunday, February 25, 2018

Problem A. Three Arrays

Input file: standard input

Output file: standard output

Time limit: 2 seconds
Memory limit: 256 mebibytes

You are given three arrays: a containing na elements, b containing nb elements and c containing nc

elements. These arrays are sorted in non-decreasing order: that is, for every i such that 1 ≤ i < na we
have ai ≤ ai+1, for every j such that 1 ≤ j < nb we have bj ≤ bj+1, and for every k such that 1 ≤ k < nc

we have ck ≤ ck+1.

Your task is to calculate the number of triples (i, j, k) such that |ai−bj | ≤ d, |ai−ck| ≤ d, and |bj−ck| ≤ d.

Input

The input contains one or more test cases. Each test case consists of four lines.

The first line of each test case contains four integers: d, na, nb, and nc (1 ≤ d ≤ 109,
1 ≤ na, nb, nc ≤ 5 · 105).

The second line contains na integers a1, a2, . . . , ana : the array a (−109 ≤ ai ≤ 109).

The third line contains nb integers b1, b2, . . . , bnb
: the array b (−109 ≤ bi ≤ 109).

The fourth line contains nc integers c1, c2, . . . , cnc : the array c (−109 ≤ ci ≤ 109).

All arrays are sorted in non-decreasing order. The total sum of na over all testcases does not exceed
5 · 105. The total sum of nb over all testcases does not exceed 5 · 105. The total sum of all nc over all
testcases does not exceed 5 · 105. The test cases just follow one another without any special separators.

Output

For each test case, print a single integer: the number of triples (i, j, k) such that |ai−bj | ≤ d, |ai−ck| ≤ d,
and |bj − ck| ≤ d.

Example

standard input standard output

1 3 3 3

1 2 3

1 2 3

1 2 3

1 6 6 6

1 1 2 2 3 3

2 2 3 3 4 4

3 3 4 4 5 5

15

56

Page 1 of 15

XVIII Open Cup named after E.V. Pankratiev
Stage 13: Grand Prix of Saratov, Sunday, February 25, 2018

Problem B. Expected Shopping

Input file: standard input

Output file: standard output

Time limit: 4 seconds
Memory limit: 256 mebibytes

You want to buy m cans of chips. There are n different shops, and each shop has enough cans of chips
to cover your needs. The price of a single can of chips at i-th shop is ai coins. You don’t like to pay
more than B coins for a can, so if at some shop j the price of a can is aj > B, then for you this price is
unreasonable. Otherwise, it is reasonable.

You may visit shops in arbitrary order, but each shop can be visited no more than once.

Let us assume that you visit shop j and you still need to buy k cans of chips. If the price at this shop is
reasonable (aj ≤ B), then you buy k cans at this shop and go home without visiting any shop afterwards.
Otherwise, you buy only one can of chips, and if you still need to buy some cans, you proceed to the next
shop.

As soon as you have m cans of chips, you finish your shopping trip. It is guaranteed that there are at
least m shops, so this has to happen eventually.

Calculate the expected number of coins you will spend if each possible shopping plan is equiprobable.
Formally, this means that each permutation of n numbers denoting the order in which you plan to visit
the shops has the same probability of being chosen. The answer must be calculated as a rational fraction
p
q , where q > 0 and gcd(p, q) = 1.

Input

The first line contains three integers: n, m, and B (1 ≤ m ≤ n ≤ 8 · 105, 1 ≤ B ≤ 5 · 106).

The second line contains n integers a1, a2, . . . , an, where ai is the price of a single can of chips at i-th
shop (1 ≤ ai ≤ 5 · 106).

Output

Let p and q be the numbers such that p
q is the expected number of coins you will spend, q > 0 and

gcd(p, q) = 1. Print p on the first line and q on the second line of the output.

Examples

standard input standard output

3 2 4

2 3 4

6

1

7 3 3

7 6 5 4 3 2 1

47

5

11 5 16

20 21 23 10 6 19 5 5 25 27 14

50329

924

Page 2 of 15

XVIII Open Cup named after E.V. Pankratiev
Stage 13: Grand Prix of Saratov, Sunday, February 25, 2018

Problem C. Cover the Paths
Input file: standard input

Output file: standard output

Time limit: 1 second
Memory limit: 256 mebibytes

You are given an undirected unweighted tree consisting of n vertices labeled by integers 1, 2, . . ., n. A
total of m simple paths are chosen in this tree. Each path is described as a pair of its endpoints (ai, bi).

Let V be the set of all vertices of the tree. We say that subset S of V is good if for every i such that
1 ≤ i ≤ m, the simple path from ai to bi contains at least one vertex from S. We say that subset T be
the best subset if T is a good subset and there is no good subset X such that |X| < |T |.
You have to find the best subset of V .

Input

The first line contains an integer n, the number of vertices in the tree (1 ≤ n ≤ 105).

Each of the next n − 1 lines describes an edge of the tree. Edge i is denoted by two integers ui and vi,
the labels of vertices it connects (1 ≤ ui, vi ≤ n, ui 6= vi). It is guaranteed that the given edges form a
tree.

The next line contains an integer m, the number of paths (1 ≤ m ≤ 105).

Each of the next m lines describes a path in the tree. Path i is denoted by two integers ai and bi, the
labels of the endpoints (1 ≤ ai, bi ≤ n). For some paths, it may be that ai = bi. It is not guaranteed
that all paths are pairwise distinct.

Output

On the first line, print the size of the best subset of V . On the second line, print the labels of vertices
belonging to the best subset of V in any order.

If there are several possible solutions, print any one of them.

Examples

standard input standard output

4

1 2

2 3

2 4

2

1 2

4 2

1

2

6

1 2

2 3

3 4

5 6

5 2

5

2 1

6 6

1 4

3 4

4 1

3

6 3 1

Page 3 of 15

XVIII Open Cup named after E.V. Pankratiev
Stage 13: Grand Prix of Saratov, Sunday, February 25, 2018

Problem D. Elevator
Input file: standard input

Output file: standard output

Time limit: 1 second
Memory limit: 256 mebibytes

You have a very important job: you are responsible for an elevator in the new skyscraper.

There are n persons who will come to the underground parking located on floor 0 and wait for an elevator
to bring them to some upper floor. Formally, i-th person comes to the elevator at moment ti and wants
to reach floor ai. The elevator has infinite capacity; that is, there is no limit on the number of people
using the elevator at any moment. All numbers ti are distinct. Passengers always enter the elevator as
long as it is at floor 0.

The elevator uses the following algorithm: it stays open on floor 0 until you send it to deliver passengers,
then it moves to the highest floor it needs (the maximum ai among all passengers who are currently in
the elevator), distributing the passengers in the process, and returns to the parking. The elevator spends
1 unit of time to move to the next floor (or to the previous floor). The time spent for opening and closing
the doors of the elevator, as well as for the passengers entering and leaving the elevator, is negligible. At
moment 0, the elevator is at floor 0.

You want to minimize the moment of time when the elevator will return to floor 0 after delivering
everyone.

Input

The input contains one or more test cases.

The first line of each test case contains one integer n: the number of passengers (1 ≤ n ≤ 2 · 105).

Each of the following n lines contains two space-separated integers ti and ai: the moment of time when
i-th passenger comes to the elevator, and the destination floor of i-th passenger (1 ≤ ti, ai ≤ 109).

All ti in one test case are distinct, passengers appear in input in ascending order of ti.

The sum of the values of n over all test cases does not exceed 2 · 105. The test cases just follow one
another without any special separators.

Output

For each test case, print one integer: the minimum possible moment of time when the elevator will return
after delivering all passengers.

Example

standard input standard output

3

1 9

2 6

15 6

3

1 9

2 6

15 8

31

33

Page 4 of 15

XVIII Open Cup named after E.V. Pankratiev
Stage 13: Grand Prix of Saratov, Sunday, February 25, 2018

Problem E. Code-Cola Plants
Input file: standard input

Output file: standard output

Time limit: 4 seconds
Memory limit: 512 mebibytes

Berland consists of n cities which are numbered by integers from 1 to n. There are m directed roads
connecting some pairs of cities. There is no directed cycle of roads in Berland.

There are two Code-Cola plants in Berland. The first one is a producing plant, it is located in the city
a. The second one is a recycling plant, it is located in the city b.

The Code-Cola Corporation decided to use n − 1 roads for delivery. Using this set of roads, it must
be possible to reach all of the n cities from the production plant (that is, from the city a). Also the
Code-Cola Corporation decided to use some other n − 1 roads by recycling trucks which will deliver
empty Code-Cola bottles to the recycling plant. Using this second set of roads, it must be possible to
reach the recycling plant (that is, the city b) from all of the n cities.

Help the Code-Cola Corporation to find two disjoint sets of roads such that:

• each of the two sets contains n− 1 roads;

• it is possible to get to any city from the city a by moving along the first set of roads;

• it is possible to get from any city to the city b by moving along the second set of roads.

Input

The input contains one or more test cases. The input format for each test case is described below.

Each test case starts with a line containing four integers: n, the number of cities in Berland, m, the number
of roads, a, the city with the producing plant, and b, the city with the recycling plant (2 ≤ n ≤ 5 · 105,
1 ≤ m ≤ 106, 1 ≤ a, b ≤ n). It is possible that a = b.

The following m lines contain descriptions of the roads, one description per line. The i-th descrip-
tion consists of two integers xi and yi meaning that there is a directed (one-way) road from xi to yi
(1 ≤ xi, yi ≤ n). It is guaranteed that there is no directed cycle of roads in Berland. Between a pair of
cities, there can be multiple roads in the same direction.

The sum of all values of n over all test cases in a test does not exceed 5 · 105. The sum of all values of
m over all test cases in a test does not exceed 106. The test cases just follow one another without any
special separators.

Output

For each test case, print the answer as follows:

If there is a solution, print “YES” on a separate line, followed by two lines containing n− 1 road indices
each. The first line must describe the roads from the first set, the second line must describe the roads
from the second set. All 2 · (n − 1) indices must be distinct. The roads are numbered from 1 to m in
order of their appearance in the input. You can print numbers on a line in any order. If there are several
possible solutions, print any one of them.

If there is no solution, print “NO” on a separate line.

Page 5 of 15

XVIII Open Cup named after E.V. Pankratiev
Stage 13: Grand Prix of Saratov, Sunday, February 25, 2018

Example

standard input standard output

4 7 1 4

1 2

1 2

1 4

2 3

2 3

3 4

3 4

4 3 1 2

1 2

2 4

4 3

5 8 3 1

3 2

5 2

3 4

4 5

4 1

2 1

3 5

3 1

YES

2 5 6

3 7 4

NO

YES

1 3 4 8

5 6 2 7

Page 6 of 15

XVIII Open Cup named after E.V. Pankratiev
Stage 13: Grand Prix of Saratov, Sunday, February 25, 2018

Problem F. GCD
Input file: standard input

Output file: standard output

Time limit: 4 seconds
Memory limit: 512 mebibytes

You are given an array of integers a1, a2, . . . , an.

Find the maximum possible greatest common divisor of all numbers from the array if you can erase no
more than k elements (k ≤ n

2) from this array.

Input

The first line contains two integers: n, the number of elements in the array, and k, the maximum number
of elements you can erase (2 ≤ n ≤ 105, 0 ≤ k ≤ n

2).

The second line contains n integers a1, a2, . . . , an: the array a (1 ≤ ai ≤ 1018).

Output

Print the maximum possible greatest common divisor of all elements of the array after erasing no more
than k elements.

Examples

standard input standard output

4 1

6 15 35 14

1

4 2

6 15 35 14

7

3 1

897612484786617600 5828 16027

1457

Page 7 of 15

XVIII Open Cup named after E.V. Pankratiev
Stage 13: Grand Prix of Saratov, Sunday, February 25, 2018

Problem G. Berland Post
Input file: standard input

Output file: standard output

Time limit: 3 seconds
Memory limit: 256 mebibytes

Berland Post is the national postal service of Berland. There is exactly one post office in each of n
Berland cities. Cities and their respective offices are numbered by integers from 1 to n.

There are m pairs of cities (a, b) such that there is direct post traffic from a to b. For each such pair of
cities, the delivery time is known: formally, you are given m triples (aj , bj , dj) meaning that each day, the
post office in aj has to send correspondence to the post office in bj , and dj is the time elapsed between
sending the correspondence from aj and receiving it at bj .

Each day, all offices must be open for the equal consecutive amount of time, which is denoted as T . But
opening times may differ. If the opening time of i-th office is oi, then the closing time is oi + T .

Some values of oi are known and fixed, but some of them are up to you. Your goal is to find such values
T ≥ 0 and oi that each office receives all the correspondence no later than at closing time, and T is the
minimum possible. It is allowed for an office to receive the correspondence even before opening. Assume
that each office sends the correspondence instantly after opening.

Formally, find the minimum possible non-negative T and values oi such that oaj + dj ≤ obj + T for each
of the m given triples (aj , bj , dj).

Input

The input contains one or more test cases.

Each test case starts with a line containing two integers: n, the number of cities, and m, the number of
direct traffic paths (1 ≤ n ≤ 1000, 0 ≤ m ≤ 2000).

The second line of each test case contains n tokens oi, where oi is either a question mark (“?”) if the
opening time of the office i is not given and your task is to define it, or an integer (−105 ≤ oi ≤ 105) if
the opening time of the office i is known and you can not change it.

The following m lines contain descriptions of direct traffic paths, one per line. Each line contains three
integers: aj , bj , and dj , denoting direct post traffic from the city aj to the city bj with delivery time dj
(1 ≤ aj , bj ≤ n, aj 6= bj , 1 ≤ dj ≤ 100). It is guaranteed that, for each pair of the cities (a, b), there is at
most one direct traffic path from a to b.

The sum of all values n in a test case does not exceed 1000. The sum of all values m in a test case does
not exceed 2000. The test cases just follow one another without any special separators.

Output

For each test case, print exactly two lines.

Print the minimum possible non-negative real value of T on the first line and the values o1, o2, . . ., on
on the second line. The values of oi must be in the range [−109, 109]. Print T and oi with absolute error
of at most 10−4.

The values oi 6= “?” in the input must not change. For each of the m given triples (aj , bj , dj), it must be
true that oaj + dj ≤ obj + T .

Page 8 of 15

XVIII Open Cup named after E.V. Pankratiev
Stage 13: Grand Prix of Saratov, Sunday, February 25, 2018

Examples

standard input standard output

2 1

5 7

1 2 3

1

5 7

2 2

? ?

1 2 3

2 1 1

3 0

? ? 3

2

9 10

0

1 -1 3

Page 9 of 15

XVIII Open Cup named after E.V. Pankratiev
Stage 13: Grand Prix of Saratov, Sunday, February 25, 2018

Problem H. Compressed Spanning Subtrees

Input file: standard input

Output file: standard output

Time limit: 2 seconds
Memory limit: 256 mebibytes

This is an interactive problem. Make sure that your output does not get buffered
after each query. Use, for instance, fflush(stdout) in C++, System.out.flush() in Java, or
sys.stdout.flush() in Python.

For a tree T consisting of n vertices numbered from 1 to n, the compressed spanning subtree S(X) of
a set X of spanned vertices (vertices that are not in X are called not spanned) can be defined by the
following algorithm:

1. Assign S(X)← T ;

2. If there is any not spanned vertex that has exactly one edge incident to it, remove it along with the
edge;

3. Repeat step 2 while its condition stays true;

4. If there is any not spanned vertex that has exactly two edges incident to it, remove it along with
the edges and add a new edge connecting the two remaining endpoints of the removed edges;

5. Repeat step 4 while its condition stays true.

Formally, S(X) is the smallest subgraph of T containing all vertices in X and then having all other
vertices of degree two or less smoothed out.

The tree from test 1, and its compressed spanning subtrees for X = 3, 4, 6 and for X = 2, 5, 6.

You are not given the tree T . Instead, your task is to find it. You can ask questions of the following
form: “How many vertices does the compressed spanning subtree of X contain?”. And since otherwise
finding the tree by asking such questions would be impossible, there are no vertices incident to exactly
two edges in T .

Interaction Protocol

The first line of input contains a single integer n (2 ≤ n ≤ 100).

Page 10 of 15

XVIII Open Cup named after E.V. Pankratiev
Stage 13: Grand Prix of Saratov, Sunday, February 25, 2018

Your program can ask a question by printing a line in the format “? k x1 x2 . . . xk” where integer k
(1 ≤ k ≤ n) equals to the number of vertices in X and distinct integers xi (1 ≤ xi ≤ n) represent these
vertices in any order. You can ask no more than 2550 questions.

The answer for such question is an integer given on a separate line: the number of vertices in the
compressed spanning subtree in question.

After asking sufficient questions, your program must give the answer by printing a line in the format
“! p2 p3 . . . pn”. Here, considering T as a rooted tree with root at vertex 1, pi must be the parent
vertex of vertex i. After giving the answer, the program must immediately terminate gracefully.

Example

standard input standard output

6

3

4

4

? 3 4 3 6

? 4 1 2 3 6

? 3 2 5 6

! 1 2 2 3 3

Page 11 of 15

XVIII Open Cup named after E.V. Pankratiev
Stage 13: Grand Prix of Saratov, Sunday, February 25, 2018

Problem I. Prefix-free Queries
Input file: standard input

Output file: standard output

Time limit: 2 seconds
Memory limit: 256 mebibytes

Let C(s1, s2, . . . , sk) be the number of ways to construct a prefix-free set from the multiset of strings
s1, s2, . . . , sk. A prefix-free set is a set of distinct strings in which there are no two strings such that
one of these strings is a prefix of another one. In particular, an empty set is a valid prefix-free set. For
example, if for any i 6= j, si is not a prefix of sj , then C(s1, . . . , sk) = 2k.

Note that we count not the sets themselves, but the ways to construct such sets: the number of ways to
choose a subset of indices out of {1, 2, . . . , k} such that the strings with these indices form a prefix-free set.
For example, C(“aa”, “aa”, “a”, “a”) = 5: the five ways are to construct an empty set, a set containing
the first string, a set containing the second string, a set containing the third string, and a set containing
the fourth string.

You are given a string s consisting of n lowercase English letters, and q queries. Let s[l, r] be the substring
slsl+1 . . . sr−1sr. For each query denoted as “k m l1 r1 l2 r2 . . . lk rk”, print one integer: the value
C(s[l1, r1], s[l2, r2], . . . , s[lk, rk]), taken modulo m.

Input

The first line contains two integers: n, the length of s, and q, the number of queries to answer
(1 ≤ n ≤ 4 · 105, 1 ≤ q ≤ 4 · 105).

The second line contains a string s of length n consisting of lowercase English letters.

Next q lines contain queries, one query per line. Each query has the form “k m l1 r1 l2 r2 . . . lk rk”
(1 ≤ k ≤ 4 · 105, 2 ≤ m ≤ 109, 1 ≤ lj ≤ rj ≤ n).

The total sum of all k over all queries does not exceed 4 · 105.

Output

For each query, print a line containing a single integer: the value C(s[l1, r1], s[l2, r2], . . . , s[lk, rk]), taken
modulo m.

Example

standard input standard output

10 6

aabbaacaba

4 30 1 2 5 6 10 10 10 10

5 20 1 2 3 4 5 6 7 8 9 10

1 2 1 10

3 20 9 9 7 7 8 8

5 20 6 6 7 7 8 8 9 9 10 10

4 20 1 1 2 2 3 3 4 4

5

4

0

8

16

9

Page 12 of 15

XVIII Open Cup named after E.V. Pankratiev
Stage 13: Grand Prix of Saratov, Sunday, February 25, 2018

Problem J. Subsequence Sum Queries

Input file: standard input

Output file: standard output

Time limit: 2 seconds
Memory limit: 256 mebibytes

You have an array a containing n integers and an integer m. You also have q queries to answer. The i-th
query is described as a pair of integers (li, ri). Your task is to calculate the number of such subsequences
aj1 , aj2 , . . . , ajk that li ≤ j1 < j2 < . . . < jk ≤ ri and (aj1 + aj2 + . . . + ajk) mod m = 0. In other words,
you need to calculate the number of subsequences of subarray [ali , ali+1, . . . , ari] such that the sum of
elements in each subsequence is divisible by m.

Input

The first line contains two integers n and m: the number of elements in a and the modulo (1 ≤ n ≤ 2 ·105,
1 ≤ m ≤ 20).

The second line contains n integers ai: the elements of array a (0 ≤ ai ≤ 109).

The third line contains one integer q: the number of queries (1 ≤ q ≤ 2 · 105).

Then q lines follow. The i-th of these lines contains two integers li and ri that describe the i-th query
(1 ≤ li ≤ ri ≤ n).

Output

Print q lines. The i-th of them must contain the answer for the i-th query. Queries are indexed in the
order they are given in the input. Since the answers can be very large, print them modulo 109 + 7.

Example

standard input standard output

4 3

5 1 3 2

4

1 2

1 3

1 4

2 4

2

4

6

4

Page 13 of 15

XVIII Open Cup named after E.V. Pankratiev
Stage 13: Grand Prix of Saratov, Sunday, February 25, 2018

Problem K. Consistent Occurrences
Input file: standard input

Output file: standard output

Time limit: 4 seconds
Memory limit: 256 mebibytes

Let us define a consistent set of occurrences of string t in string s as a set of occurrences of t in s such
that no two occurrences intersect (in other words, no character position in s belongs to two different
occurrences).

You are given a string s consisting of n lowercase English letters, and m queries. Each query contains a
single string ti.

For each query, print the maximum size of a consistent set of occurrences of t in s.

Input

The first line contains two space-separated integers n and m: the length of string s and the number of
queries (1 ≤ n ≤ 105, 1 ≤ m ≤ 105).

The second line contains the string s consisting of n lowercase English letters.

Each of the next m lines contains a single string ti consisting of lowercase English letters: the i-th query
(1 ≤ |ti| ≤ n, where |ti| is the length of the string ti).

It is guaranteed that the total length of all ti does not exceed 105 characters.

Output

For each query i, print one integer on a separate line: the maximum size of a consistent set of occurrences
of ti in s.

Example

standard input standard output

6 4

aaaaaa

a

aa

aaa

aaaa

6

3

2

1

Page 14 of 15

XVIII Open Cup named after E.V. Pankratiev
Stage 13: Grand Prix of Saratov, Sunday, February 25, 2018

Problem L. Increasing Costs

Input file: standard input

Output file: standard output

Time limit: 2 seconds
Memory limit: 256 mebibytes

Berland consists of n cities labeled from 1 to n. The city number 1 is the capital of Berland. There are
m two-way roads between some cities. Roads can intersect only in cities. There is no more than one road
between each pair of cities, and there is no road that connects a city to itself. If you are moving by j-th
road in any direction, you have to pay the tax equal to cj . It is possible to reach any city from the
capital using only the given m roads.

You are the CEO of a delivery company, its main office is located in the capital. Your company delivers
different goods to every city of Berland, so for each city, you chose some route from the capital to that
city which minimized the total sum of taxes of all roads in the route. Let dk be the total cost of the
chosen route from the capital to city k.

The government has decided to choose exactly one road (you don’t know which one) and increase the
tax for using it. So, for each road, you want to know how many cities will be affected if the tax for using
this road is increased. City k is affected if, after the tax is increased, you can’t choose a route such that
the total cost of this route is equal to dk.

Input

The first line contains two integers n and m: the number of cities and the number roads in Berland
(2 ≤ n ≤ 2 · 105, n− 1 ≤ m ≤ 2 · 105).

Each of the next m lines contains three space-separated integers: uj , vj , and cj (1 ≤ uj , vj ≤ n,
1 ≤ cj ≤ 109). These mean that the road number j between cities uj and vj initially has tax equal to cj .

There is no more than one road between each pair of cities, and there is no road that connects a city to
itself. It is guaranteed that it is possible to reach every city from the capital using the given roads.

Output

Print m integers, one per line. The j-th integer must be the number of cities affected by increasing the
cost of j-th road.

Example

standard input standard output

6 6

1 2 2

2 3 1

3 4 7

4 5 4

5 2 4

4 6 4

5

1

0

0

1

1

Page 15 of 15

