
ACM International Collegiate Programming Contest 2017/18
XLVI St. Petersburg State University Championship, Sunday, December 18, 2016

Problem A. Casino
Input file: blackjack.in

Output file: blackjack.out

Time limit: 2 seconds
Memory limit: 256 mebibytes

Eugene owns a small casino, and there is only game in that casino. This game uses an infinite deck of
cards: for each card type, the probability of such card being the next one in the deck is known, and the
probabilities stay constant. Each card type also has an integer value associated with it.

The game is played in the following way. First, the dealer takes cards one by one. As soon as the sum of
values of taken cards becomes greater than integer S, he gives the last taken card to the player and stops
taking new cards.

After that, the player takes cards one by one, and he could not drop the card if he already took it. The
player does not know the values of the dealer’s cards, but knows how many cards the dealer took. Also,
he knows the algorithm which the dealer uses.

The goal for the player is to have cards with the sum of values not greater than S, but greater than the
sum of values of dealer’s cards. In such case, he will win and receive one dollar. If the sum of the player’s
cards and the sum of the dealer’s cards are equal, the game will end in a draw, and the player will receive
nothing. in all other cases, the player will lose one dollar.

In these latter days, things are going bad in the casino, so Eugene decided to study the game more
thoroughly. He wants to find the expected value of player’s gain if he plays optimally.

Input
The first line contains two integers n and S (2 ≤ n ≤ 50, 2 ≤ S ≤ 400), the amount of different types of
cards and the limit for the sum of card values.

The second line contains n different integers a1, a2, . . ., an (2 ≤ ai ≤ 400), the values of the cards.

The third line contains n real numbers p1, p2, . . ., pn (0.0001 ≤ pi ≤ 1.0000), the probabilities of
appearance of card types with values a1, a2, . . ., an respectively. It is guaranteed that each pi has at
most four digits after the decimal point, and the sum of all pi is equal to 1.

Output
Output a single real number: the expected value of player’s gain. The absolute or relative error should
not exceed 10−6.

Examples
blackjack.in blackjack.out

2 4

2 4

0.25 0.75

0.0351562500

2 6

2 4

0.25 0.75

-0.2614746094

Problem A (Div. 1) Developer: Eugene Kurpilyansky Page 1 of 15

ACM International Collegiate Programming Contest 2017/18
XLVI St. Petersburg State University Championship, Sunday, December 18, 2016

Problem B. Caps and Cakes
Input file: caps-and-cakes.in

Output file: caps-and-cakes.out

Time limit: 2 seconds
Memory limit: 256 mebibytes

In the kindergarten “Learn by Playing”, children go for a walk in the park every day. There, they stop to
eat a light meal: each kid gets one pouch of delicious fruit puree. When the puree is eaten, children throw
empty pouches in a trash can but keep the hexagonal pouch caps. The caps are special: they have the
form of identical regular hexagons with connectors at the sides, so that they can be assembled together
as construction toys.

Six friends from the kindergarten met today at a celebration, and each of them brought m caps to play
cake-building. A cake is a planar figure which consists of caps and resembles a regular hexagon. A cake
is characterized by its size which is a positive integer. A cake of size 1 is just a lonely cap. A cake of size
s > 1 is assembled as follows: take a cake of size (s − 1) and add a new layer of caps along its border.
Cakes of sizes 1, 2 and 3 are shown on the picture.

The six friends want to know how they can make the least possible number of cakes using all the caps
they got. Help them find that out.

Input
The first line of input contains an integer n: the number of caps each of the friends brought to the party
(1 ≤ n ≤ 1018).

Output
On the first line, print an integer k: the number of cakes. This number must be as small as possible.

On the second line, print k integers separated by spaces: the sizes of the cakes in arbitrary order. If there
are several solutions with the same k, print any one of them.

Example
caps-and-cakes.in caps-and-cakes.out

3 6

1 2 1 2 1 1

Explanation
In the example, the friends have 18 caps in total. They can be arranged to form six cakes: for example,
four cakes of size 1 and two cakes of size 2. Using all caps, the children cannot form less than six cakes.

Problem B (Div. 1) Developer: Ivan Kazmenko Page 2 of 15

ACM International Collegiate Programming Contest 2017/18
XLVI St. Petersburg State University Championship, Sunday, December 18, 2016

Problem C. Circles
Input file: circles.in

Output file: circles.out

Time limit: 2 seconds
Memory limit: 256 mebibytes

There are n random circles on a plane. Construct a circle that intersects as many of the given circles as
possible.

Input
The first line of input contains one integer n: the number of circles (1 ≤ n ≤ 80).

Each of the next n lines contains three integers xi, yi, ri: coordinates of the center of i-th circle and its
radius.

It is guaranteed that all tests except the example satisfy n = 80. In addition, they are all generated as
follows. First, three integers a0, c, d are chosen randomly (1 ≤ a0, c, d ≤ 109 + 7). Then sequence ai of
length 3 · n is generated following the rule ai = (ai−1 · c + d) mod (109 + 7) + 1. Finally, coordinates of
center and radii of circles are defined as xi = a3·i−2, yi = a3·i−1, ri = a3·i.

Output
On the first line, print one integer: the number k of given circles intersecting with the circle you constructed.

On the second line print three real numbers x, y, r: coordinates of the center and radius of the circle you
constructed.

Your answer will be considered correct if k is maximum possible and the ring with center (x, y) and radii
r − 10−9, r + 10−9 of inner and outer circles respectively intersects exactly k of the given circles.

We guarantee that any ring of breadth 10−6 will intersect no more given circles than the optimal answer.

Example
circles.in circles.out

3

1 1 1

3 1 1

1 3 1

3

2 2 2.41421356237

Problem C (Div. 1) Developer: Alexey Gordeev Page 3 of 15

ACM International Collegiate Programming Contest 2017/18
XLVI St. Petersburg State University Championship, Sunday, December 18, 2016

Problem D. C-plus-minus
Input file: cpm.in

Output file: cpm.out

Time limit: 5 seconds
Memory limit: 512 mebibytes

Four pages long statement?!

Inexperienced participant

It’s an implementation problem, sit down
and code

Experienced participant who did not read
the statement

How do I code that?

Experienced participant who did read the
statement

Modern IDEs (integrated development environments) do a lot of stuff. Say, instantly suggest functions
and variables based on types, show relevant documentation snippets, detect mistakes, rearrange code
according to the style guide, consume all available RAM... In this problem you have to implement small
piece of IDE for the C± language.

In the beginning you have C± program’s source code called S0. Your program should reformat the code
according to rules below with adding and removing of spaces and newlines, yielding program F0, which
you have to print.

Afterwards you should perform m queries which change the source code. Let’s denote the source code
after performing i-th query (1 ≤ i ≤ m) as Si. For each Si we can yield a reformatted source code Fi.
For each modification query you should print one integer: L(Fi), where L(x) stands for number of lines
in source code x (see below for precise definition).

There are three types of queries:

• “add p @t@” query inserts string t into source Si−1, starting at character number p (here |t| stands
for the length of t):

Si = Si−1,1Si−1,2 . . . Si−1,p−1t1t2 . . . t|t|−1t|t|Si−1,pSi−1,p+1 . . . Si−1,|Si−1|

• “del p l” query removes a string of length l from Si−1, starting at character number p:

Si = Si−1,1Si−1,2 . . . Si−1,p−1Si−1,p+lSi−1,p+l+1 . . . Si−1,|Si−1|

• “get r s k” query does not affect the source (Si = Si−1), but you should print a substring of source
Fi. The desired substring is characterized with a line number r, number of the first desired character
in that line s and length of the substring k.

If Fi has less than r lines, we consider an empty string to be the answer for the get query. If r-th
line in Fi does not have some characters with numbers s, s + 1, . . . , s + k − 1, we consider these
missing characters to be equal to “#” (octothorpe, ASCII code is 35).

Problem D (Div. 1) Developer: Egor Suvorov Page 4 of 15

ACM International Collegiate Programming Contest 2017/18
XLVI St. Petersburg State University Championship, Sunday, December 18, 2016

It’s not guaranteed that S0, S1, . . . , Sn are correct C± programs. However, formatting rules described
below can be applied to arbitrary sources.

Before defining formatting rules we’ll introduce several supporting definitions:

• Identifier is a maximal by inclusion sequence of Latin letters, digits, square brackets “[” and “]”
(ASCII codes 91 and 93), dots “.” (ASCII code 46) and underscores “_” (ASCII code 95). Some
correct C± identifiers: hi, hello_world, bob[er9]5, 12c.hairs, 12_3.

• Binary operator is one of the following characters:

Character ASCII code
+ 43
- 45
* 42
/ 47
< 60
> 62
= 61
& 38
| 124

• C± allows the following characters: parts of identifiers, binary operators, round brackets (“(”, ASCII
code 40 and “)”, ASCII code 41), curly brackets (“{”, ASCII code 123 and “}”, ASCII code 125),
comma “,” (ASCII code 44), semicolon “;” (ASCII code 59), space (ASCII code 32) and new
line character (ASCII code 10, typically denoted by “\n” in modern programming languages). It’s
guaranteed that all sources S0, . . . , Sn contain allowed characters only.

• Lexem is either identifier or any other allowed character, except for space and new line character.
For example, source hello+ world contains three lexems: hello, + and world.

• R-balance of brackets (round or curly) in a some string S is the result of the following pseudocode
(it counts balance for round brackets, code for curly brackets is similar):

B <- 0

for each C in S do {

if C is "(" then B <- B + 1

if C is ")" then B <- B - 1

if B < 0 then B <- 0

if B > R then B <- R

}

return B

Not strictly speaking, this code calculates difference between number of opening and closing brackets
of a specific type in S, but if this balance “gets beyond” [0, R] segment, then it’s “truncated” (R
is either positive integer or ∞). For example, string “{{{){{}})}}(” has ∞-balance of both round
and curly brackets equal to 1, and string “((((()” has 4-balance of round brackets equal to 3.

• Position p is said to be inside round brackets if a substring t which ends at p and starts right after
last curly bracket before p (or in the beginning of the source if there are no curly brackets before
p), has 4-balance of round brackets strictly greater than zero. For example, if t =((((())), then
p is inside round brackets (as 4-balance is 1), and if t =((((()))), it is not (as 4-balance is 0).

Formatting is performed as follows:

1. All spaces and new line characters are removed from the source. Neighboring lexems are not
considered as a single lexem after this step.

Problem D (Div. 1) Developer: Egor Suvorov Page 5 of 15

ACM International Collegiate Programming Contest 2017/18
XLVI St. Petersburg State University Championship, Sunday, December 18, 2016

2. New line characters are added in the following places (unless empty lines appear):

• After opening curly bracket “{”.

• Before closing curly bracket “}”.

• After closing curly bracket “}”, unless it’s immediately followed by either “else” identifier or
semicolon.

• After semicolon “;”, unless it is located inside round brackets.

• In the very end of the source.

Line in the resulting program is defined as a sequence of characters ending with new line character.
So, L(x) is defined as the number of new line characters.

3. Spaces are added in each line between neighboring lexems according to the table below (plus on the
intersection of row A and column B means adding of space between A and B):

Identifier Binary operator , { () ;

Identifier + + - + - - -

Binary operator + - + + + + -

, + + - + + - +

} + + - + + - -

(- + - - - - -

) + + - + + - -

; + + - + + - +

Note that opening curly bracket { is always the last character in the line. Similarly, } is always the
first character in the line.

4. If one of the identifiers if, for, while, do is immediately followed by opening round bracket, an
additional space is added between them.

5. Afterwards an indent is calculated for each line. Indent is equal to ∞-balance of curly brackets in
all previous lines.

6. Spaces are prepended to each line in the amount of doubled indent of the corresponding line.

Input
First lines of the input file contain original source code S0 in the format @S0@ (at sign has ASCII code of
64). S0 contains allowed characters only (1 ≤ |S0| ≤ 105). Note that S0 is not allowed to contain at sign,
although it can contain spaces and/or new line characters. The second at sign is immediately followed by
new line character.

The next line contains a single integer m, the number of queries (0 ≤ m ≤ 105). Next lines contain queries
separated by at least one new line character, and i-th query is formatted as follows:

• “add p @t@”: add non-empty string t into current source, starting at position p (1 ≤ p ≤ |Si−1|+1).
It’s guaranteed that t contains allowed characters only. In particular, t may contain spaces and/or
new line characters. The second at sign is immediately followed by new line character. It’s guaranteed
that sum of all |t| does not exceed 105.

• “del p k”: erase a substring of length k from current source, starting at position p
(1 ≤ p ≤ p+ k − 1 ≤ |Si−1|).

• “get r s k”: print k characters of line number r of current source, starting at position s
(1 ≤ r, s, k ≤ 105). It’s guaranteed that sum of all k does not exceed 105.

Please see example for better understanding of input format.

Problem D (Div. 1) Developer: Egor Suvorov Page 6 of 15

ACM International Collegiate Programming Contest 2017/18
XLVI St. Petersburg State University Championship, Sunday, December 18, 2016

Output
At the beginning of the output file, print one integer L(F0): number of lines in the formatted source F0.
Afterwards print another space, at sign, min(105, |F0|) characters of F0, followed by another at sign and
new line character.

Next, print the answer of i-th query on a separate line:

• For add and del queries: print number of lines in the source after corresponding change (L(Fi)).

• For get queries: print string @t@ where t is the requested substring of length l of the formatted source
Fi. If there is no line of number r in Fi (that is, r > L(Fi)), then you should print empty string
instead of t. If r ≤ L(Fi), but some of requested characters do not exist in Fi, you should print “#”
character (ASCII code 35) instead of them. We consider new line character to be not included in t.

Please see example for better understanding of output format. Follow the format as close as possible: your
answer must be identical to the required answer.

Example
cpm.in cpm.out

@if (a) { foo } else { bar; };

for (int a = 0; a< 5; a+=1)

{ some strange(command, wow); }}

else int foo bar {

{(hi; strange; world)}

(hi; strange; world() {there;}

}@

14

get 3 2 10

get 100 1 1

add 32 @NEW

LINE@

get 6 1 30

del 32 8

add 18 @se if @

get 2 1 10

get 3 1 10

get 4 1 10

del 20 1

get 2 1 10

get 3 1 10

get 4 1 10

get 5 1 10

16 @if (a) {

foo

} else {

bar;

};

for (int a = 0; a < 5; a += 1) {

some strange(command, wow);

}

} else int foo bar {

{

(hi; strange; world)

}

(hi; strange; world() {

there;

}

}

@

@ else {###@

@@

16

@fNEW LINEor(int a = 0; a < 5; @

16

16

@ foo#####@

@} else if @

@ bar;####@

17

@ foo#####@

@}#########@

@elseif se @

@ bar;####@

Problem D (Div. 1) Developer: Egor Suvorov Page 7 of 15

ACM International Collegiate Programming Contest 2017/18
XLVI St. Petersburg State University Championship, Sunday, December 18, 2016

Problem E. Maharajah
Input file: standard input

Output file: standard output

Time limit: 2 seconds
Memory limit: 256 mebibytes

This is an interactive problem.

Maharajah is a chess piece which can move either as a queen or as a knight. It is used in some chess-like
games. Its mobility makes maharajah an extremely powerful piece. For example, in the game called
“Maharajah and the Sepoys”, White maharajah fights against a complete army of Black chess pieces
(called sepoys). To win the game, the maharajah must checkmate Black’s king.

Vasya heard that there exists a strategy which allows Black to win the game regardless of White’s moves.
He thinks that’s not fair and now tries to remove some black pieces and analyze the games he obtains.
At first, he tried the most simple case: maharajah must checkmate a lone Black King.

Vasya’s friend Petya said that this game is even more unfair. Petya stated that he can checkmate a lone
Black King with maharajah even without any information about King’s moves and position.

Your task is to repeat Petya’s achievement. Your program will play as White maharajah against the
evil interactor. It means that the interactor is able to choose an arbitrary valid initial position of the
Black King (that is, any position different from maharajah’s one and such that the King is not in check)
and its valid sequence of moves not only before the start of the game, but at any moment of the game
process later. If at least one sequence exists in which the maharajah is taken by the King, or the King is
stalemated, your solution is considered wrong. Also, you have only 50 moves to checkmate the invisible
King, otherwise you lose too (remember that in classic chess, 50 moves without capturing a piece or
moving a pawn is considered a draw). If your solution makes more than 50 moves, it is considered wrong.
Maharajah moves first. Good luck!

Interaction Protocol
The game is started by specifying the initial position of maharajah. You should read the position from a
single line of the standard input stream. After that, you need to make your moves. Each move is made by
writing to the standard output stream a single line containing the position you selected for maharajah.
Interactor responds with a single line with -1 if you lost or made an invalid move, 0 if the game continues,
and 1 if you win. You program must immediately terminate gracefully when it has received anything
different from 0.

The position (either in the input or in the output) is always specified by a single lowercase letter (a. . . h)
followed by a single digit (1. . . 8).

To prevent output buffering, flush the output buffer after each move: this can be done by using, for
example, fflush (stdout) in C or C++, System.out.flush () in Java, flush (output) in Pascal or
sys.stdout.flush () in Python.

Example
standard input standard output

a1

0

-1

b1

d2

Explanation
Note that, in this example, the solution loses. Your task is to write a winning one!

Problem E (Div. 1) Developer: Andrei Lopatin Page 8 of 15

ACM International Collegiate Programming Contest 2017/18
XLVI St. Petersburg State University Championship, Sunday, December 18, 2016

Problem F. Matryoshka Dolls
Input file: matryoshka-dolls.in

Output file: matryoshka-dolls.out

Time limit: 2 seconds
Memory limit: 256 mebibytes

A matryoshka is a set of wooden dolls of different sizes. All dolls except the smallest one are hollow and
can be separated into two parts: upper and lower. When the matryoshka is assembled, the smallest doll
lies inside the second smallest, which lies inside the third one, and so on.

Little Ignat had a few identical matryoshkas each of which consisted of n dolls. Unfortunately, at the
moment, some dolls may have gone missing, and the remaining ones are scattered across the floor.

Now Ignat wants to assemble the matryoshkas so that they don’t occupy too much of the floor. As some
of the dolls may be missing, he decided to follow more liberal rules: a matryoshka is a doll which either
is empty or contains one doll of any lesser size which, in turn, can either be empty or contain one doll of
any size even lesser, and so on.

It is known how many dolls of each size are on the floor. What is the minimum possible number of
matryoshkas Ignat can assemble according to these rules?

Input
The first line of input contains an integer n: the number of sizes of dolls (1 ≤ n ≤ 100). The second
line contains n space-separated integers a1, a2, . . ., an: the number of dolls of each size (1 ≤ ai ≤ 100).
The sizes are listed from largest to smallest: for example, a1 is the number of largest dolls, and an is the
number of smallest dolls.

Output
On the first line, print an integer k: the minimum possible number of matryoshkas.

Example
matryoshka-dolls.in matryoshka-dolls.out Illustration

3

3 2 5

5

Explanation
The picture to the right of the example shows one possible configuration of the dolls where the number
of matryoshkas is 5.

Problem F (Div. 1) Developer: Ivan Kazmenko Page 9 of 15

ACM International Collegiate Programming Contest 2017/18
XLVI St. Petersburg State University Championship, Sunday, December 18, 2016

Problem G. Non-Extremal Value
Input file: standard input

Output file: standard output

Time limit: 2 seconds
Memory limit: 256 mebibytes

This is an interactive problem.

Consider four pairwise distinct numbers: a, b, c and d. The numbers are fixed but kept secret. One may
ask at most three questions of the form “is it true that one of these numbers is less than another?” and
get the answer for each question immediately. After that, one must name a number which is neither the
smallest nor the greatest of these four numbers.

Write a program which will solve this problem for any possible a, b, c and d.

Interaction Protocol
Your program must communicate with the jury program via standard input and standard output streams.
The program may ask from zero to three questions, and after that, it must provide an answer.

The questions are accepted in the form “is it true that x < y?”. To ask such a question, print the line
“Is x < y?” to the standard output stream. The variables x and y must be replaced by different letters
from letters “a”, “b”, “c” and “d”. The line must end with a newline.

To prevent output buffering, flush the output buffer after each request: this can be done by using, for
example, fflush (stdout) in C or C++, System.out.flush () in Java, flush (output) in Pascal or
sys.stdout.flush () in Python.

The answer to the question in the form “Yes.” or “No.” on a separate line is provided at your program’s
standard input stream.

If your program is ready to give an answer, do it by printing the line “Value z is non-extremal.” to
the standard output stream. The variable z must be replaced by letter “a”, “b”, “c” or “d”. This line must
also end with a newline. After that, your program must immediately terminate gracefully.

Example
Please note that the participant’s output is displayed to the left, and the following input to the right.

participant’s actions jury’s answers

Is a < b?

Is b < c?

Is c < d?

Value b is non-extremal.

Yes.

Yes.

No.

Problem G (Div. 1) Developer: Ivan Kazmenko Page 10 of 15

ACM International Collegiate Programming Contest 2017/18
XLVI St. Petersburg State University Championship, Sunday, December 18, 2016

Problem H. Parallelograms
Input file: parallelograms.in

Output file: parallelograms.out

Time limit: 2 seconds
Memory limit: 256 mebibytes

Little Igor likes to build geometric shapes. Igor has n segments. Igor is still a little boy so he does not
know that segments can be rotated. He knows only how to translate them.

Today Igor learned a new shape: the parallelogram. Of course, now he wants to build as many of these
wonderful shapes as he can. He will use each segment in at most one parallelogram. Each side of each
parallelogram will consist of just one segment. Also, Igor is interested only in shapes with positive area.
Some segments may be left unused.

Help Igor!

Input
The first line of input contains an integer n: the number of segments Igor has (1 ≤ n ≤ 105). Each
of the next n lines contain four integers xi,1, yi,1, xi,2, yi,2: coordinates of ends of the i-th segment
(−109 ≤ xi,1, yi,1, xi,2, yi,2 ≤ 109).

Output
Print one integer k: the maximum possible number of parallelograms Igor can build with his segments.

Example
parallelograms.in parallelograms.out

5

0 0 1 2

2 2 5 3

5 7 4 5

0 1 3 2

3 5 3 5

1

Problem H (Div. 1) Developer: Alexey Gordeev Page 11 of 15

ACM International Collegiate Programming Contest 2017/18
XLVI St. Petersburg State University Championship, Sunday, December 18, 2016

Problem I. Posters
Input file: posters.in

Output file: posters.out

Time limit: 2 seconds
Memory limit: 256 mebibytes

The upcoming World Congress will gather together n delegates. A large hall contains a round table where
exactly n people can take seats. However, there is a problem: there is a poster above each of the n seats
at the table. The posters have different contents, and the delegates have different preferences, so in order
to avoid awkward situations, certain delegates can not seat under certain posters.

The Chief Administrator of the Congress got the full list of restrictions. In this list, the delegates are
numbered by integers from 1 to n. The seats at the table are also numbered by integers from 1 to n. Each
restriction is a pair (d, s) which means that the delegate numbered as d can not take seat numbered as s.

Help the Chief Administrator by listing every possible seating plan which satisfies all restrictions. The
history of previous congresses shows with absolute certainty that the number of possible seating plans is
no more than 1000.

Input
The first line contains two integers n and m separated by a space: the number of delegates and the number
of restrictions (1 ≤ n ≤ 100, 0 ≤ m ≤ 10 000). Each of the next m lines contains two integers di and si
which mean that delegate di can not take seat si (1 ≤ di, si ≤ n). It is guaranteed that all pairs (di, si)
are distinct.

Output
On the first line, print a single integer k: the number of possible seating plans. Each of the following k
lines must contain one possible seating plan: n integers a1, a2, . . ., an separated by spaces. The number ai
denotes the seat which should be taken by delegate number i. Each possible seating plan must be printed
exactly once. Print the seating plans in any order.

It is guaranteed that in the right answer 0 ≤ k ≤ 1000.

Example
posters.in posters.out

4 6

1 2

1 3

2 3

2 4

4 4

2 1

3

4 2 1 3

1 2 4 3

4 2 3 1

Explanation
In the example, the second delegate can take only seat number 2. If we choose which of the remaining
delegates takes seat number 1, it turns out that the delegates which occupy the remaining two seats can
be uniquely determined.

Problem I (Div. 1) Developer: Ivan Kazmenko Page 12 of 15

ACM International Collegiate Programming Contest 2017/18
XLVI St. Petersburg State University Championship, Sunday, December 18, 2016

Problem J. Quaternary Squares
Input file: quaternary.in

Output file: quaternary.out

Time limit: 2 seconds
Memory limit: 256 mebibytes

It is well-known that one can write any number in quaternary numeral system using only digits 0, 1, 2
and 3.

Vasya once wrote an integer in quaternary numeral system and then decided to calculate its square root
on his computer. Occasionally, in his code he had parsed that number as if it was in decimal representation
but did not notice he had done something wrong, because the square root was also an integer consisting
in its decimal representation only of digits 0, 1, 2 and 3!

Later, when he has realized his mistake, he has called such numbers quaternary squares. More formally, a
quaternary square is a decimal integer without leading zeros consisting only of digits 0, 1, 2 and 3 which is
a perfect square and its square root is also an integer consisting only of digits 0, 1, 2 and 3 in its decimal
representation.

Your task is quite simple. Let us sort all quaternary squares of length n in ascending order. Find the k-th
of them (numeration is 1-based).

Input
The input consists of one or more test cases.

The only line of each test case contains two integers n and k (1 ≤ n ≤ 40, k ≥ 1). It is guaranteed that
k-th quaternary square exists. The sum of all values of n in the input does not exceed 239.

The last line contains two zeros.

Output
Output one line for each test case: k-th quaternary square of length n.

Example
quaternary.in quaternary.out

3 1

3 2

0 0

100

121

Problem J (Div. 1) Developer: Andrei Lopatin Page 13 of 15

ACM International Collegiate Programming Contest 2017/18
XLVI St. Petersburg State University Championship, Sunday, December 18, 2016

Problem K. Transmission by Parts
Input file: standard input

Output file: standard output

Time limit: 2 seconds
Memory limit: 256 mebibytes

This is an interactive problem.

Sasha is a scout. She wants to transmit an important message to the headquarters. The message is
concealed in a string consisting of lowercase English letters. Today, the cipher is as follows: the message
is the most frequent substring of the transmitted string. In case there are several most frequent strings,
the message is the lexicographically greatest of them.

Sasha knows that transmitting messages is a dangerous practice. Therefore, she is going to split the string
into k parts and transmit them one after another: each transmission will take place when the conditions
are favorable. Still, a variety of things might happen between two consecutive transmissions, so after
transmitting any part, transmitting the rest might become impossible. Therefore, Sasha wants to check
that in this case, the message will not turn out to be something catastrophic.

Given k string parts in the order they have in the string, print k strings: what will be deciphered message
if the transmission stops after the first, second, . . ., k-th part.

String s is lexicographically greater than string t if either t is a proper prefix of s or there is a position
where s and t do not match, and in the leftmost of such positions i, the relation is si > ti.

Interaction Protocol
Your program must communicate with the jury program via standard input and standard output streams.

At first, your program gets the number k on a separate line (1 ≤ k ≤ 10 000). After that, your program
gets k string parts. Each part is given on a separate line, consists of lowercase English letters and has
length from one to one million letters inclusive. Moreover, it is guaranteed that the total length of the
string is from one to one million letters inclusive. Each part starting from the second one is given as soon
as your program provides an answer for the previous part.

After getting each of the k string parts, print one line: what will be the deciphered message if the
transmission ends now. The line must end with a newline.

To prevent output buffering, flush the output buffer after each request: this can be done by using, for
example, fflush (stdout) in C or C++, System.out.flush () in Java, flush (output) in Pascal or
sys.stdout.flush () in Python.

After printing k answers, your program must immediately terminate gracefully.

Example
standard input standard output

4

a

c

ba

cb

(reading...)

a

c

a

cb

Problem K (Div. 1) Developer: Ivan Kazmenko Page 14 of 15

ACM International Collegiate Programming Contest 2017/18
XLVI St. Petersburg State University Championship, Sunday, December 18, 2016

Problem L. UFO Driver
Input file: ufo.in

Output file: ufo.out

Time limit: 5 seconds
Memory limit: 256 mebibytes

UFO driver Arseny wants to land his UFO onto a plaform which is a square of size
L×L meters. Arseny’s UFO has the form of a square of size 2A×2A meters without
one quarter. Its relative position to the platform is shown on the picture. Here, L = 6
and A = 2.

The landing module established a coordinate system on the platform. Its axes are
going along the sides of platform, one corner has coordinates (0, 0), and the opposite
corner is at (L,L).

For technical reasons, UFO can land only so that all its corners are in points with
integer coordinates. Additionally, UFO can’t be rotated.

There are several cameras on the platform. Each of them sees a rectangle inside the platform. Each camera
has picture quality characterized by an integer qi. The visibility of Arseny’s landing is the maximal quality
of a picture where a part of his UFO with non-zero area can be seen. The visibility of landing where no
cameras can see the UFO is zero. The picture below shows the first sample test. For each cell, the visibility
of landing on it is displayed in the cell. The only way to land with visibility 2 is shown.

Arseny wants his UFO to stay unidentified, so he needs to land at some position where visibility is
minimum possible. Help him find such position. Note that the UFO should land fully inside the platform.

Input
Input data consists of one or more test cases given one after another.

The first line of a test case description contains two integers A and L (1 ≤ A, 2 ·A ≤ L ≤ 109) which are
the sizes of UFO and the platform.

The second line contains an integer n (1 ≤ n ≤ 50 000), the number of cameras. The next n lines
describe the cameras, one per line. Each camera is described by five integers xi,1, yi,1, xi,2, yi,2 and qi
(0 ≤ xi,1 < xi,2 ≤ L, 0 ≤ yi,1 < yi,2 ≤ L, 1 ≤ qi ≤ 109): the coordinates of two opposite corners and
picture quality.

The sum of n for all test cases in one test is no more than 50 000.

Output
For each test case, print two lines. On the first line, print one integer: the minimum possible visibility of
landing. On the next line, print two integers: the coordinates of the UFO corner closest to the origin after
landing. If there are several possible answers, print any one of them.

Example
ufo.in ufo.out Notes

1 4

4

0 0 4 1 10

0 0 1 4 10

1 1 3 3 2

2 2 3 3 5

1 2

1

1 1 2 2 10

2

1 1

0

0 0

10

10

10

10

10 10 10 10

2

2

2

5

0

0

00 0 0

Problem L (Div. 1) Developer: Pavel Kunyavskiy Page 15 of 15

