
XVII Open Cup named after E.V. Pankratiev
Stage 5: Grand Prix of Siberia, Sunday, November 6, 2016

Problem 1. Ski race
Input file: input.txt
Output file: output.txt
Time limit: 1 second
Memory limit: 256 megabytes

Winter has come to the town of N , and it’s time for the first cross-country skiing race. This
year, participants registered through the Internet — they entered their data, and each picked a
number which had not yet been picked by other skiers. Due to the high number of participants,
the organizers decided to split the race into several starts. To pick the lucky skiers for the first
start, they’ve come up with a simple rule — the skier with the number X comes to the start if no
other skier’s number is divisible by X.

Help the organizers write a program to define the numbers of those who will start first.

Input
The first line of the input file contains an integer K — the number of registered participants
(1 ≤ K ≤ 105). The second line contains K space-separated integers Ai — the numbers chosen by
the participants at the registration (1 ≤ Ai ≤ 107). All the numbers Ai are distinct.

Output
The output file must contain a single line containing the numbers of all participants starting first,
in the ascending order. Numbers must be space-separated.

Example
input.txt output.txt

3
4 8 12

8 12

Page 1 of 21

XVII Open Cup named after E.V. Pankratiev
Stage 5: Grand Prix of Siberia, Sunday, November 6, 2016

Problem 2. Chairs
Input file: input.txt
Output file: output.txt
Time limit: 1 second
Memory limit: 256 megabytes

Ostap and Kisa found themselves at a chair sale. They are facing two problems. First, they must
leave the sale as soon as possible, because their rival company, represented by father Theodore, is
breathing down their necks; second, they must get all chairs at the sale.

The sale site is a rectangular table of N rows and M columns, with some of its cells occupied by
chairs that need to be collected. Initially our enterpreneurs are in the top-left corner — the cell
with the coordinates (1, 1), and the exit is located in the bottom-right corner — the cell with the
coordinates (N,M). A single move can transfer them from a given sell to any of adjacent by a
side cells. Passing through a cell with a chair, they take the chair with them. Find a shortest path
from the starting to the ending cell. Among all such paths, find one passing through all cells with
chairs, or find out if such a path doesn’t exist.

Input
The first line contains three integers: N , M , K — size of the table and the number of chairs,
respectively (2 ≤ N,M ≤ 100, 0 ≤ K ≤ 1000).

The following K lines of the input data each contain two integers: Xi — the number of the row
in which the i-th chair is located, and Yi — the number of the column in which the i-th chair is
located (1 ≤ Xi ≤ N , 1 ≤ Yi ≤M). A single cell cannot contain multiple chairs.

Output
If collecting all chairs along any single shortest path is impossible, print a single word
«Impossible» (without brackets) in the output file.

If such a path exists, print it as a line containing the sequence of moves, with each move coded
by a single symbol according to the following:

• R— move right;

• D— move down;

If several solutions are possible, print the lexicographically smallest solution.

Example
input.txt output.txt

3 3 2
1 2
3 3

RDDR

3 3 2
1 2
2 1

Impossible

Page 2 of 21

XVII Open Cup named after E.V. Pankratiev
Stage 5: Grand Prix of Siberia, Sunday, November 6, 2016

Problem 3. Triangle
Input file: stdin
Output file: stdout
Time limit: 1 second
Memory limit: 256 megabytes

Since Koreyko having vanished treacherously with the sacred suitcase, Ostap is facing a nearly
hopeless problem — locate Koreyko with at least some approximation.

It is known that the search area is a triangle on a plane with integers coordinates. To find the
coordinates of the vertices, Ostap sends a weird telegram (a, b, c) to the Financial Committee
and gets a similarly strange reply (p, q). In reality, the three numbers from Ostap’s telegram are
coefficients of the line equation a · x + b · y = c, and the reply is the proportion of area in which
this line cuts the triangle into pieces.

It is known that all vertex coordinates are integers no greater than 1 000 in absolute value.
Moreover, the triangle is non-degenerate, and all angles are greater than 5 degrees.

Interaction protocol
This is an interactive problem, and instead of file input-output you’ll have to work with a special
program — the interactor. Interacting with the program is performed via the standard input-output
streams.

Your program will be sending queries and the interactor will be replaying to them. For each query
that contains coefficients of the line equation you will receive a reply with the proportion in which
the given line cuts the triangle.

Once the answer is printed, the participant’s solution must terminate.

Find the vertex coordinates in no more than 1 000 queries. If you cannot print the coordinates or
print them incorrectly, you will receive the Wrong Answer verdict.

Output
Ostap’s query format: “? a b c”, where a, b, c are coefficients of the equation of line. These numbers
are real numbers with no more than 15 digits after the decimal point (|a|, |b| ≤ 2 ·103, |c| ≤ 4 ·106,

1
4·106 ≤ a2 + b2 ≤ 4 · 106).
Problem answer format: “! x1 y1 x2 y2 x3 y3”, where xi, yi are integer coordinates of the required
triangle vertices. The three triangle vertices can be written in any order.

Make sure that each query ends with a line break and that you flush the output stream buffer (the
flush command of the language). Otherwise the solution may get the Deadlock verdict (process
execution exceeded the real time limit).

Input
Financial Committee answer format: “p q”, where the real numbers p and q define the proportion
in which the given line cuts the triangle (0 ≤ p, q ≤ 1, p + q = 1). The number p equals to the
part of the triangle area, for which the inequality a · x + b · y ≤ c holds. The real numbers p and
q are printed with 15 digits after the decimal point.

Page 3 of 21

XVII Open Cup named after E.V. Pankratiev
Stage 5: Grand Prix of Siberia, Sunday, November 6, 2016

Example
stdin

? 0 1 0
? 0 2 1
? 0 1 0
? 1 0 1
? 0 3 1
? 2 0 1
? 2 0 3
! 0 0 2 0 1 1

stdout
0.000000000000000 1.000000000000000
0.750000000000000 0.250000000000000
0.000000000000000 1.000000000000000
0.500000000000000 0.500000000000000
0.555555555555555 0.444444444444445
0.125000000000000 0.875000000000000
0.875000000000000 0.125000000000000

Page 4 of 21

XVII Open Cup named after E.V. Pankratiev
Stage 5: Grand Prix of Siberia, Sunday, November 6, 2016

Problem 4. Wires
Input file: input.txt
Output file: output.txt
Time limit: 1 second
Memory limit: 256 megabytes

Employees of a very large and very secret agancy work in a large rectangular room. N employees
from the first division are seated by the windows of one wall and the same number of employees
from the second division are seated along the opposite wall. One day, a very important and very
secret memo came in — computers of all employees of the two divisions were to be connected in
such a manner that each first division employee’s computer were linked with the corresponding
second division employee’s computer with a separate wire.

A technical assignment including the room blueprints was drafted. This blueprints showed the
room as a A by B rectangle: its left and right sides are of the length A, and the top and bottom
sides are of the length B. There are N input contacts on the left wall, corresponding to positions
of computers of the first division employees, and N output contacts on the right side for computers
of the second division employees. Connect each input with the corresponding output by a wire
based on the mutually unambiguous input-output correspondence.

There are rules regarding wires:

1. Wires cannot fork, i.e. each wire begins at the input contact and ends at the output contact.
2. Each wire can pass both inside and outside the rectangle (all contacts are accessible from

both sides of the rectangle wall).
3. A wire cannot cross the rectangle wall.
4. Wires cannot intersect with each other, i.e. a wire cannot go above another one.

Find the minimum total length of wire necessary to connect the contacts in the desired manner,
if it is possible. The wire thickness can be considered negligibly small: wires can pass infinitely
close to each other.

Write a program which calculates the minimum required length of wires.

Input
The first line of the input file contains three integers: A — the length of the left side of the
rectangle, B — the length of the upper side of the rectangle and N — the number of input (and
output) contacts (1 ≤ A,B ≤ 108, 1 ≤ N ≤ 105).

The second line describes the positions of all N input contacts. For each k-th input number an
integer Lk is given — the distance from the lower left corner of the rectangle to the contact
(0 ≤ Lk ≤ A). It is guaranteed that all Lk are different.

The third line contains the positions of N output contacts. For each k-th output contact an
integer Rk is provided — the distance from the lower right corner to the contact (0 ≤ Rk ≤ A). It
is guaranteed that all Rk are different.

Connect each k-th (description-wise) input contact with the k-th (description-wise) output contact.

Output
The first line of the output file must contain a single real number — the minimum total length of
all wires in a correct connection scheme. The absolute or relative error must not be greater than

Page 5 of 21

XVII Open Cup named after E.V. Pankratiev
Stage 5: Grand Prix of Siberia, Sunday, November 6, 2016

10−9.

If there are no correct ways to do the wiring, print the number −1.

Example
input.txt output.txt

6 7 3
1 3 5
5 1 3

27.560219778561036542194604983054

Commentary
Strictly mathematically speaking, the minimum total length of wires may fail to be achieved with
any of the correct wiring plans due to the infinitely small thickness of wires. In this case, find the
precise lower margin(infimum) of all possible total lengths.

Page 6 of 21

XVII Open Cup named after E.V. Pankratiev
Stage 5: Grand Prix of Siberia, Sunday, November 6, 2016

Problem 5. Voting
Input file: input.txt
Output file: output.txt
Time limit: 2 seconds (3 seconds for Java)
Memory limit: 256 megabytes

The political situation in Berland has changed. With the opposing party candidate having won
the election, the multi-level voting system has finally been canceled. Now the president of Berland
is elected by a single total voting. But the conservative zealots are busy peddling the idea to the
masses that the new voting is even more prone to tampering with the results than ever before.
To refute these calumnies, the president requested to evaluate the costs of fixing voting results by
bribing voters.

There is a total of N voters and K candidates. Each of the voters can either cast his voice for a
single candidate or abstain from voting, for example, by not going to the election. Once all voters
have voted (one way or another), the number of voices collected by each candidate is counted.
The candidate who gets strictly the most voices wins. If there is no such candidate, the elections
are deemed null and void.

You are asked to write a program based on the following statements. For each individual voter
the candidate for whom he or she is going to vote is known. It is allowed to change the voter’s
preference to any other variant by spending a certain sum of money. The goal is for the necessary
candidate to win the elections. Minimize the amount of money necessary to complete this task.

Input
The first line of the input file contains three integers: N — the count of voters in Berland, K — the
count of candidates running for presidency, T — the index of candidate who needs the elections
fixed in his favor (1 ≤ N ≤ 100, 1 ≤ K ≤ 10, 1 ≤ T ≤ K). Both all voters and all candidates are
numbered in succession beginning from the number one.

This is followed by a costs matrix of N lines and K + 1 columns. The element Ci,j of the matrix
defines the amount of money to be spent in order to assure that the i-th voter votes for the j-th
candidate (with 1 ≤ i ≤ N , 1 ≤ j ≤ K). The last element Ci,K+1 in the line defines the amount
of money to be spent in order to keep the voter from going to the elections.

It is guaranteed that all costs Ci,j are integers and fall within the range of 0 ≤ Ci,j ≤ 109. In
addition, for each i strictly one of the numbers Ci,1, Ci,2, . . . , Ci,K+1 equals zero: the zero means
that the given voter has been planning to vote in the corresponding way.

Output
The first line of the output file must contain a single integer — the minimum required amount of
money to be spent in order to change the voters’ preferences.

The second line of the input file must contain N integers. The i-th of these numbers Vi means that
the i-th voter must vote for the Vi-th candidate(1 ≤ Vi ≤ K + 1). The special value Vi = K + 1
means that the i-th voter must skip the elections.

If there are several optimal solutions, print any of them.

Page 7 of 21

XVII Open Cup named after E.V. Pankratiev
Stage 5: Grand Prix of Siberia, Sunday, November 6, 2016

Example
input.txt output.txt

5 2 2
0 9 2
0 10 1
7 8 0
0 2 1
3 0 1

3
1 3 3 2 2

Example explanation
The example suggests that the second voter’s preference must be changed to skipping the elections
(costing 1 unit of money), and that the fourth voter must be persuaded to vote for the desired
candidate (costing 2 units). As the result, only the first voter is going to vote for the first candidate,
with the fourth and fifth voters voting for the second candidate.

Page 8 of 21

XVII Open Cup named after E.V. Pankratiev
Stage 5: Grand Prix of Siberia, Sunday, November 6, 2016

Problem 6. Finite automaton
Input file: input.txt
Output file: output.txt
Time limit: 2 second
Memory limit: 256 megabytes

Today Vasya learned what a «deterministic finite automaton» (DFA) is, and he’s aching to tell
everyone about it.

As it turns out, there are N states in a DFA. The automaton can be in any one of these state at
any given moment during its work. The input of the automaton is an arbitrary string, and after
its work, the automaton tells whether the string is acceptable.

The automaton works in the following manner:

1. In the beginning of its work, the automaton is in the start state, which is always marked as
such.

2. The automaton reads all symbols of the string one by one from left to right. After reading
each symbol, the automaton can switch to a different state (described in detail below).

3. After the string is read completely, the automaton defines the answer based on the state in
which it ended up.

For each state u of the automaton and each possible symbol c, automaton defines in which state
will it be afer reading the symbol c, if it was in the state u beforehand. This new state can either
be the same state u or be a different state. Moreover, for each state the automaton defines the
answer it will give (whether the string is accepted or not) if it finished in that state.

In the first seminar on the subject, Vasya constructed all sorts of DFA’s, and he was given the
following problem for «homework». Build a DFA which, given a non-negative integer written in
the B-ary numeral system, accepts those and only those integers that are divisible by the given
module M .

To simplify, Vasya assumes that the input number:

• begins from high-order digits (they’re written on the left, big-endian);

• can have leading zeroes;

• can be empty: in this case it is equal to zero and is definitely divisible by M .

Vasya is a born perfectionist, and he wants to learn how to build DFA’s that meet the problem
requirements with the smallest possible number of states, He asked you to help him.

Input
The only line of the input file contains two integers: B — the base of the positional numeral system
in which the input number is given and M — the module which all acceptable and only acceptable
numbers must be divisible by (2 ≤ B ≤ 16, 2 ≤M ≤ 105).

Output
Print the description of the smallest DFA meeting the problem requirements to the output file.

Page 9 of 21

XVII Open Cup named after E.V. Pankratiev
Stage 5: Grand Prix of Siberia, Sunday, November 6, 2016

The first line of the output file must contain two integers: N — the count of states in the automaton
(N ≥ 2) and S — the start state number (0 ≤ S < N). All states are numbered successively
beginning from zero.

The second line must contain N space-separated symbols. The k-th of these symbols defines
the answer the automaton gives if it ends up in the k-th state upon the completion of its work
(0 ≤ k < N). A symbol equals ‘G’ if the string should be deemed acceptable, and ‘B’ otherwise.

There must be N line following, each containing B integers. The k-th number in the i-th of these
lines contains the state number in which the automaton ends up after reading digit k, if before
that it was in the state i (0 ≤ i < N , 0 ≤ k < B). This number can be any integer between 0 and
N − 1 inclusively.

Example
input.txt output.txt

2 5 5 0
G B B B B
0 1
2 3
4 0
1 2
3 4

Example explanation
Shown below is the DFA used in the sample. The letter “S” and the number are shown near each
state. Bold arrow points to the start state. Each normal arrow describes the state the DFA goes
to after reading the digit written near the arrow.

Page 10 of 21

XVII Open Cup named after E.V. Pankratiev
Stage 5: Grand Prix of Siberia, Sunday, November 6, 2016

Problem 7. Scene management
Input file: input.txt
Output file: output.txt
Time limit: 3 seconds
Memory limit: 256 megabytes

The web-application frenzy has swept through the programming world. Nowadays, customers
want to run everything in the browser, defying logic and common sense. Unfortunately even
though Stepan works exclusively in the computer-aided design (CAD) domain, he wasn’t able to
stay away from the web. Now he has to write code in javascript language, where you can take a
promise that a job will be done, but can’t wait for its completion.

Especially sad is the peformance situation in the javascript world, including the computer graphics
performance. While the whole world is thoroughly enjoys playing the new Doom having enabled
multithreaded renderer on low-level “Vulkan” graphics API, Stepan has to work with three.js — a
wrapper around the “WebGL” API, — an abridged heavyweight OpenGL variant from a decade
ago. No wonder that rendering a model with a couple thousands of elements lags mercilessly even
on Core i7 and any graphcis card.

A distinguishing feature of CAD graphics is that the state of the objects on scene changes very
rarely. Stepan has implemented his own renderer that can improve performance by merging the
objects and rendering them by «blocks». Renderer has to be notified about the changes happening
on the scene by calling methods «add object», «remove object», «update object». Unfortunately,
Stepan’s colleagues are reluctant to call these methods manually: they are used to the rich three.js
interface, and there’s already a lot of code using three.js directly. So Stepan was forced to write an
intermediary layer, which will automatically track the changes on the three.js-scene and notifies
the renderer about them.

The scene in three.js is a rooted tree with each node representing an object to be rendered. Each
object has an unique identifier (ID) — a positive integer distinct from identifiers of all other
objects. Every object has a set of children, whose order is irrelevant. Every object also has a set
of properties (such as coordinate transformations) which influence the appearance of all objects
in the subtree. Three.js users can perform the following operations with objects:

• A.add(B): add object B as a new child of object A.

• A.remove(B): remove object B from the set of children of object A.

• A.modify(): change properties of object A.

Note that the remove operation doesn’t delete objects but just disconnects the subtree from the
scene tree (the programmer can’t really delete objects in javascript — it’s garbage collector’s job).
User can connect the disconnected objects to the scene later with the add operation. In a general
case there can be multiple disjoint object trees in any moment of time: one scene tree to be
rendered, and an arbitrary number of “disconnected” subtrees that don’t need to be rendered.

Users guarantee that their operations on objects are correct:

1. When A.add(B) is performed, object B doesn’t have a parent, and object A isn’t a
descendant of B (and isn’t equal to B).

Page 11 of 21

XVII Open Cup named after E.V. Pankratiev
Stage 5: Grand Prix of Siberia, Sunday, November 6, 2016

2. When A.remove(B) is performed, object B is in the set of children of object A.

3. Root scene object is never added as a child to another object.

Owing to the last guarantee it’s always easy to determine which object tree is the scene, because
the root of scene tree stays the same.

To «bind» the three.js scene tree to the new renderer, Stepan has implemented the intermediary
layer in the following manner. Every frame, when the renderer is called, the layer traverses the
whole scene. Next it compares all present object with those that were present during the previous
frame render, and calls all neccessary renderer methods. Unfortunately due to javascript general
sluggishness the full scene traversal takes several milliseconds for large models, and Stepan really
wants to avoid the traversal on every frame. He thinks that it’s easy to determine all changes that
occured since the last frame by tracking all operations issued by users on three.js objects.

You need to write the new implementation of the intermediary layers which will be called every
frame, takes a sequence of operations, happened since the last frame as an input, and returns
three lists of objects as an output:

• added: objects which are on the scene in this frame, but were not on the scene in the previous
frame.

• removed: objects which are not on the scene in this frame, but were on the scene in the
previous frame.

• modified: objects which are on the scene in this frame, were on the scene on the previous
frame and which need to be updated.

Object A needs to be updated, if one of the following is true:

1. Since the previous frame render, one of the ancestors of A or A itself was disconnected from
its parent by the remove operation (i.e. the path to the scene root has bene broken at least
once).

2. The modify operation was called on A or one of its parents since the previous frame render.
(i.e. there was a modification on the path to the scene root).

You can note that object doesn’t need to be updated when and when there weren’t any changes
on the path from it to the scene root: neither structural tree changes, nor internal object property
changes.

Input
The initial tree state is described first in the input. There are no object not on the scene initially.

The first line contains an integer N – the number of objects in the scene tree (1 ≤ N ≤ 100 000).
Each of the following N lines describes objects on the scene in the arbitrary order, one per line.
The object identifier is given first — the positive integer between 1 and 109. Next is the number of
its children, and after that are the identifiers of the children, separated by spaces (in an arbitrary
order, there are no duplicates).

You can assume that all described objects form a single tree, and that the root of the tree is root
scene object.

Page 12 of 21

XVII Open Cup named after E.V. Pankratiev
Stage 5: Grand Prix of Siberia, Sunday, November 6, 2016

The following line contains the integer M — the number of operations (1 ≤ M ≤ 200 000). The
following M lines describe operations, one per line.

Depending on the type, operation has the format:

• add A B

• remove A B

• modify A

• render

The add, remove, remove operation descriptions was given above, in the problem statement.
Identifiers of objects, which the operation acts upon, is substituted for A and B in each operation.
You can assume that all these objects were in the scene tree initially. The render operation starts
the next frame render.

It’s guaranteed that the height of every object tree doesn’t exceed 1000 in any moment of
time.

Output
For every render operation you must output all changes, that happened since the last render
operation. If there were no previous render operations, you must output all changes caused by
all operations before it.

Changes must be output with three object lists: added, removed, modified. The description of
these lists is given in the problem statement above. For every list you must output in one line,
separated with spaces: the name of the list, number of objects in the list, identifiers of all objects
in the list.

Changes for the render operations must be output in the same order as these render operations
were issued. In each description you must output the lists in this order: added, removed, modified.
You must output the identifiers in each list in the increasing order.

The following upper bounds on the output file size is guaranteed. The total number of objects
in the answer (for all frames and for all lists) doesn’t exceed 300 000. The number of render
operations doesn’t exceed 20 000.

Example explanation
You can see the state of the objects by the time each render operation is issued in the sample
illustration. The sample itself is given below.

Page 13 of 21

XVII Open Cup named after E.V. Pankratiev
Stage 5: Grand Prix of Siberia, Sunday, November 6, 2016

Example
input.txt output.txt

8
3 0
5 3 7 6 12
17 1 20
7 0
6 0
12 0
20 0
666 3 3 5 17
14
remove 17 20
render
remove 666 5
add 5 20
modify 20
render
add 3 5
render
modify 5
render
remove 3 5
add 666 5
render
modify 666

added 0
removed 1 20
modified 0
added 0
removed 4 5 6 7 12
modified 0
added 5 5 6 7 12 20
removed 0
modified 0
added 0
removed 0
modified 5 5 6 7 12 20
added 0
removed 0
modified 5 5 6 7 12 20

Page 14 of 21

XVII Open Cup named after E.V. Pankratiev
Stage 5: Grand Prix of Siberia, Sunday, November 6, 2016

Problem 8. A system of balance scales
Input file: input.txt
Output file: output.txt
Time limit: 1 second
Memory limit: 256 megabytes

A complicated system of balance scales and weights is set out on the floor. Each set of balance
scales consist of a stand, a beam and two cups. The beam is not fixed and rests on the stand with
a single point in such a manner that it can rotate freely around it in the vertical plane. Precise
bearing point selection allows a state of nonstable equilibrium in horizontal position. Cups are
attached to the beam ends, and they usually hold objects whose weights are to be compared. The
distance from the bearing point to the cup is called a shoulder. The rule states that upon reaching
the equilibrium shoulders correlate in the same way as do the weights of the objects in the cups.
The system of balance scales and weights works in the following way: Each of the cups of all scales
holds either a balance weight or another pair of balance scales. There is strictly one pair of balance
scales standing directly on the floor, with all other scales standing in cups of other scales. The
weights of all balance weights are known, and the weight of the scales themselves are negligibly
small compared to the balance weights. All scales are always in the state of equilibrium owing to
correct choice of bearing points. The sizes of balance weights, cups and stands are also negligibly
small compared to the length of beams.

Process a sequence of queries of two types.

1. Change the weight of a given balance weight.

2. Learn the position of the bearing point of a given pair of scales.

After each weight change of any balance weight equilibrium must be restored in all scales in the
system, with some of its bearing points shifting in the process.

Input
The first line contains two integers: N — the number of scales in the system(1 ≤ N ≤ 5 · 104) and
K — the number of queries (1 ≤ K ≤ 105).

All scales are numbered with integers beginning from one and up. Scales with the number 1 stand
on the floor. All balance weights are also numbered with integers beginning from one and up.

The second line contains (N + 1) integers: the t-th of these numbers Wt defines the initial weight
of the balance weight with the number t (1 ≤ Wt ≤ 109).

The following N line describe the scales. The i-th of these lines contains three integers: Si — length
of the beam of the i-th pair of scales (1 ≤ Li ≤ 104), Li — number of the scales standing in the left
cup of the i-th scales and Ri — number of the scales standing in the right cup of the i-th scales. If
the left cup is occupied by scales, then i < Li ≤ N , if it is occupied by a balance weight, then Li

equals the number of the balance weight with a «minus» sign, with 1 ≤ −Li ≤ N + 1. Similarly,
Ri defines either the number of the standing scales (i < Ri ≤ N) or the number of the balance
weight with a «minus» (1 ≤ −Ri ≤ N + 1).

This is followed by K lines, with every j-th line containing a single query. The query description
begins with an integer tj, defining the query type (1 ≤ tj ≤ 2). If tj = 1, it is followed by two

Page 15 of 21

XVII Open Cup named after E.V. Pankratiev
Stage 5: Grand Prix of Siberia, Sunday, November 6, 2016

integers: kj — number of the balance weight with its weight being changed (1 ≤ kj ≤ N + 1), Vj

— new weight of the balance weight(1 ≤ Vj ≤ 109). If tj = 2, it is followed by a single integer kj
— the number of scales for which the position of its bearing point must be found (1 ≤ kj ≤ N).
There are no other types of queries.

Output
For each query to define the bearing point a single integer must be printed: the distance from the
left cup of the scales to the bearing point. Answers must be produced in the order of occurence of
the corresponding queries in the input data. The absolute or relative error of each answer should
be less than or equal 10−13.

Example
input.txt output.txt

1 1
15 20
10 -1 -2
2 1

5.7142857142857142857142857142857

4 9
3 2 5 5 15
6 2 3
4 -3 4
4 -5 -4
3 -1 -2
2 1
2 2
2 3
2 4
1 4 45
2 3
1 5 45
2 3
2 1

4
2
1
1.2
3
2
5.4

Example explanation
Initial state of the system from the second sample:

5

3 2

15 5

4 2

2 2 1 3

1.2 1.8

Page 16 of 21

XVII Open Cup named after E.V. Pankratiev
Stage 5: Grand Prix of Siberia, Sunday, November 6, 2016

Problem 9. Karmon be ill
Input file: input.txt
Output file: output.txt
Time limit: 1 second
Memory limit: 256 megabytes

Vasya loves catching karmons. Every karmon has a numerical parameterBP (battle power). The
larger the parameter value, the stronger the karmon — and the more valuable.

Vasya’s feeling ill and he’s asked his friend Peter to go karmon trapping instead of him. Peter
has agreed, but Vasya also asked for another thing: he wants Peter to report the BP sum of the
K most powerful currently caught karmons every time Peter catches another karmon. Peter has
found this request a bit weird, but there’s nothing he wouldn’t do for an ill friend. Nevertheless
he decided to clarify things and asked Vasya what should be done if he hasn’t yet collected K
karmons. Vasya gave it a thought and decided that in this case, Peter shouldn’t report anything
at all.

Help Peter write a program that is fed a list of BP ’s of the caught karmons and produces the
values to be reported to Vasya.

Input
The first line contains two integers: N — the total number of the trapped karmons and K — the
number of karmons for which the sum of their BP must be reported (10 ≤ N ≤ 100 000,
2 ≤ K ≤ min(N, 1000)).

The second line contains N integers defining the karmons’ BP in order of catching. All these
numbers lie within the range of 1 to 10 000 inclusively.

Output
The single line of the output file must contain (N −K + 1) integers — the sums of BP for the K
most powerful karmons after catching each karmon (beginning from the K-th one).

Example
input.txt output.txt

14 4
1 2 3 4 5 6 7 8 9 10 1 1 1 1

10 14 18 22 26 30 34 34 34 34 34

Page 17 of 21

XVII Open Cup named after E.V. Pankratiev
Stage 5: Grand Prix of Siberia, Sunday, November 6, 2016

Problem 10. Battle City Online
Input file: input.txt
Output file: output.txt
Time limit: 8 seconds
Memory limit: 256 megabytes

Peter and Vasya have been avid fans of a NES-game called «Battle City», better known among
gamers as «Tanks». A recent joyous occasion was the official release of a modern online version of
the game «Battle City Online 2016» («BCO 2016»). They got the new game right away and got
deep into studying the gameplay. It would be an understatement to say they were surprised to
discover they were the only players in the game when they went online and connected to the game
server. The screen was adorned with a nearly empty game map, which is a checkered rectangular
8 × 8 field, bearing a single tank driven by the controllers in the guys’ hands. Each of the two
identical controllers had eight buttons: four directional buttons and four buttons for shooting in
each direction.

Each cell in the field is either empty or occupied by a stretch of brick or armored wall, or an area
of a water body. Initially the tank is situated in an empty cell. When game processes a push of
a movement button, the tank is moved in the required direction to the adjacent cell if that cell
is empty. If the adjacent cell in the given direction is nonexistent or non-empty, the tank doesn’t
change its position upon the processing of the button signal. Upon pushing a shooting button a
fragment of wall nearest to the tank in the given direction is considered. If such a fragment exists
and is made of brick, it is destroyed (the cell becomes empty until the end of the game).

It looked like Peter and Vasya were about to give up all hopes of having fun playing the game,
but suddenly Peter noticed that the game developers failed to implement simultaneous control of
the tank using both controllers. If at any single moment of time both players push a button on
their controllers, only one of the two pushes will be processed. The acting controller is then chosen
equiprobably.

Peter and Vasya came up with the following game. They close their eyes, holding the controllers.
Each of them performs N pushes on his controller — one push per second. This way, there are two
simultaneous pushes every second, of which only one is processed.

You may have already guessed that the guys would bet on which cell the tank will end up at, once
all pushes at all moments of time are processed. The one, whose guess is closer to the result, wins.

The thing is, Vasya is planning to cheat. He knows perfectly well which buttons Peter is going to
push on his controller, and has already decided which buttons he’s going to push himself. For each
cell of the game field, he needs to know the probability of the tank ending up in that particular
cell in the end. He’s asking you to calculate these probabilities. Your task is to write a program
which would calculate these values with maximum precision.

Input
The first line of the input file contains a single integer N — the number of button pushes by
each of the players (1 ≤ N ≤ 30). The second line contains N symbols describing Peter’s pushes.
Similarly, the third line contains N symbols describing Vasya’s pushes.

Each of the symbols in the second and third line can be one of the following:

• «u» — move up (to the previous line),

Page 18 of 21

XVII Open Cup named after E.V. Pankratiev
Stage 5: Grand Prix of Siberia, Sunday, November 6, 2016

• «d» — move down (to the next line),

• «l» — move left(to the previous column),

• «r» — move right(to the next column),

• «U» — shoot up,

• «D» — shoot down,

• «L» — shoot left,

• «R» — shoot right.

The following eight lines, define the game map. Each line is eight symbols long. Each of the
symbols of the game map is one of the following:

• «.» — empty cell,

• «B» — brick wall,

• «A» — armored wall,

• «W» — water body,

• «T» — tank starting location.

Output
The output file must contain eight lines, each containing eight probability values as a non-reducible
fractions Pij/Qij. The j-th fraction at the i-th line should be the probability of the tank ending
up in the cell located at the intersection of the i-th line and j-th column.

The denominator must always be printed, even if it equals to one. See the examples below clarifying
the task.

Page 19 of 21

XVII Open Cup named after E.V. Pankratiev
Stage 5: Grand Prix of Siberia, Sunday, November 6, 2016

Example
input.txt

5
rrrru
DUDUd
W....WWW
......WW
.BBWW...
.T......
.AABB...
........
B......A
BB....AA

output.txt
0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1
0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1
0/1 1/32 3/32 0/1 0/1 1/32 0/1 0/1
0/1 1/32 5/32 11/32 1/4 0/1 0/1 0/1
0/1 0/1 0/1 1/32 0/1 1/32 0/1 0/1
0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1
0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1
0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1

Example explanation
Spaces were added in this example of the output file to ease the visual perception.

The following graphic shows one of possible routes «DrDUu». First and third moves are shootings
towards the armoured wall. Please note, how a brick wall is destroyed on the forth move.

Page 20 of 21

XVII Open Cup named after E.V. Pankratiev
Stage 5: Grand Prix of Siberia, Sunday, November 6, 2016

Problem 11. Test generation
Input file: input.txt
Output file: output.txt
Time limit: 2 seconds
Memory limit: 256 megabytes

A while ago Pasha came up with a simple problem for a programming contest training session. The
input data in the problem consists of the line S containing N digits, and three integers L, R and
P (1 ≤ L ≤ R ≤ N , P being a prime number). The requested output was the remainder from the
division of the subnumber formed by digits at the positions from L through R, inclusively, by the
number P . It should be noted that this subnumber may contain leading zeroes. Pasha prepared
the problem description, wrote a solution and prepared lots of tests to check the solutions.

Before a practice session, Pasha discovered that T files with input test data were gone, and only
the corresponding answer files remained. He remembers that the line S in all these tests was
identical, moreover, he remembers that line perfectly well. Similarly, he remembers the value of
P , which was also identical in all missing tests. To recover the lost input data, Pasha is asking for
your help. Write a program which is given a line S of the length N , the numbers P and T , as well
as T values of Ai — the answers for the lost test data. For each Ai, the program must figure out
the number of different pairs {Li, Ri} (1 ≤ Li ≤ Ri ≤ N) — the pairs of acceptable values from
the input file, as well as find one of these pairs.

Input
The first line of the input file contains the line S, consisting of N decimal digits (1 ≤ N ≤ 105).
The second line of the input data contains two integers T and P — the number of the lost tests
and the prime number, for which the remainder from the division by that number was to be
calculated.(1 ≤ T ≤ 100, 11 ≤ P ≤ 109 + 33, P — the prime number). This is followed by T
lines, with the i-th line containing a single integer Ai — the answer for the i-th test input dataset
(0 ≤ Ai < P).

Output
For each of these T solutions, the output file must receive three integers Ci, Li and Ri — the number
of different acceptable pairs of input values, and the values of one of those pairs, respectively. If
Pasha has made an error when preparing the tests, and there are no acceptable pairs for a solution,
three zeroes must be printed.

Example
input.txt output.txt

923813
4 17
5
3
15
13

2 1 3
3 3 3
0 0 0
3 4 5

Page 21 of 21

