Problem B. Connected Spanning Subgraph

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
1 second
512 mebibytes

Bobo has a connected undirected graph G with n vertices and m edges where vertices are conveniently labeled with $1,2, \ldots, n$.

Bobo chooses a non-empty subset of edges such that the graph with the chosen edges is still connected. He would like to know the number of such subsets modulo 2 .
Note that a graph is connected if, for any two vertices a and b, there exists a path which connects a and b.

Input

The input contains zero or more test cases, and is terminated by end-of-file. For each test case:
The first line contains two integers n and $m\left(2 \leq n \leq 2 \cdot 10^{5}, 1 \leq m \leq 2 \cdot 10^{5}\right)$.
The i-th of the following m lines contains two integers a_{i} and b_{i} which denote an edge between vertices a_{i} and b_{i}.
It is guaranteed that the sum of all m does not exceed $2 \cdot 10^{5}$, and all the given graphs are connected.

Output

For each test case, output an integer which denotes the remainder modulo 2 .

Example

	standard input		standard output
2	1	1	
1	2		0
3	2		
1	2		
2	3		
3	3		
1	2		
2	3	1	
3	1		

Problem E. Maximum Flow

Input file:
Output file:
standard input
Time limit:
standard output
Memory limit:
2 seconds
512 mebibytes

Bobo has an undirected graph with $(2 n+2)$ vertices conveniently labeled with the following pairs of integers: $(0,0),(0,1), \ldots,(0, n),(1,0),(1,1), \ldots,(1, n)$. The graph has three classes of edges.

- The edges of the first class connect vertices $(0, i-1)$ and $(0, i)$ with capacity a_{i} for $i \in\{1,2, \ldots, n\}$.
- The edges of the second class connect vertices $(1, i-1)$ and $(1, i)$ with capacity b_{i} for $i \in\{1,2, \ldots, n\}$.
- The edges of the third class connect vertices $\left(0,\left\lfloor\frac{i-1}{2}\right\rfloor\right)$ and ($1,\left\lfloor\frac{i}{2}\right\rfloor$) with capacity c_{i} for $i \in\{1,2, \ldots, 2 n+1\}$.

Bobo would like to find the maximum flow from vertex $(0,0)$ to vertex $(1, n)$.

Input

The input contains zero or more test cases, and is terminated by end-of-file. For each test case:
The first line contains an integer $n\left(1 \leq n \leq 5 \cdot 10^{5}\right)$.
The second line contains n integers $a_{1}, a_{2}, \ldots, a_{n}$.
The third line contains n integers $b_{1}, b_{2}, \ldots, b_{n}$.
The fourth line contains $(2 n+1)$ integers $c_{1}, c_{2}, \ldots, c_{2 n+1}$.
The constraints are: $1 \leq a_{i}, b_{i}, c_{i} \leq 10^{9}$.
It is guaranteed that the number of test cases does not exceed 10^{5}, and the sum of all n does not exceed $5 \cdot 10^{5}$.

Output

For each test case, output an integer which denotes the maximum flow.

Example

standard input	standard output
1	5
2	6
2	
131	
3	
147	
258	
2332124	

Problem F. Rectangles Inside Rectangle

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
1 second
512 mebibytes

Bobo has a large rectangle with lower left and upper right corners at $(0,0)$ and $\left(w, 10^{6}\right)$. He also has n small axis-parallel rectangles inside the large rectangle. The weight of the i-th rectangle is v_{i}. For each rectangle, either its left border or its right border (but not both) coincides with the left or right side of the large rectangle.
Bobo would like to choose a subset of small rectangles in such a manner that the rectangles may touch each other, but they do not overlap (that is, there are no points that belong to the interior of more than one rectangle). Among all the possibilities, he wants the one with the maximum possible sum of weights.

Input

The input contains zero or more test cases, and is terminated by end-of-file. For each test case:
The first line contains two integers n and $w\left(1 \leq n \leq 2000,2 \leq w \leq 10^{6}\right)$ denoting the number of small rectangles and the width of the large rectangle.
The i-th of the following n lines contains five integers type $i_{i}, l_{i}, a_{i}, b_{i}$ and $v_{i}\left(\right.$ type $_{i} \in\{0,1\}$, $0 \leq a_{i}<b_{i} \leq 10^{6}, 1 \leq l_{i}<w, 0 \leq v_{i} \leq 10^{6}$) where v_{i} is the weight of the i-th rectangle. Here, type $_{i}=0$ means the lower left and upper right corner of the i-th rectangle are ($0, a_{i}$) and (l_{i}, b_{i}), while type $_{i}=1$ means the lower left and upper right corner of the i-th rectangle are $\left(w-l_{i}, a_{i}\right)$ and (w, b_{i}).
It is guaranteed that for all $1 \leq i<j \leq n, a_{i} \neq a_{j}, a_{i} \neq b_{j}, b_{i} \neq a_{j}$ and $b_{i} \neq b_{j}$. Additionally, the sum of all n does not exceed 2000 .

Output

For each test case, output an integer which denotes the maximum sum of weights.

Example

			standard input		standard output
3	10			100	
0	3	1	6	12	
0	3	3	4	100	
1	9	2	5	11	
3	10				
0	3	1	6	12	
0	1	3	4	5	
1	9	2	5	11	
6	5				
1	1	17	32	4	
0	3	1	18	7	
1	3	4	8	12	
1	2	15	20	14	
1	1	30	33	16	
1	4	2	16	13	

Note

For the third test, Bobo can choose the 3 -rd, 4 -th and 5 -th rectangles.

Problem G. Cute Panda

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	512 mebibytes

There are n pandas numbered from 1 to n, i-th of them has a_{i} donuts. There are also n bins numbered from 1 to n, i-th of them can hold b_{i} donuts. For any i from 1 to n, i-th panda can distribute his donuts to i-th and $(i \bmod n+1)$-th bin.
Can you find a way to maximize the number of distributed donuts?

Input

The input contains zero or more test cases, and is terminated by end-of-file. For each test case:
The first line contains an integer $n\left(3 \leq n \leq 10^{6}\right)$.
The second line contains n integers $a_{1}, a_{2}, \ldots, a_{n}\left(0 \leq a_{i} \leq 10^{9}\right)$.
The third line contains n integers $b_{1}, b_{2}, \ldots, b_{n}\left(0 \leq b_{i} \leq 10^{9}\right)$.
It is guaranteed that the sum of all n does not exceed 10^{6}.

Output

For each test case, output an integer which denotes the maximum number of distributed donuts.

Example

			standard input		standard output	
5					11	
8	4	8	3	10		13

Problem H. Order-Preserving Partition

Input file: standard input
Output file: standard output
Time limit: 2 seconds
Memory limit: $\quad 512$ mebibytes
Bobo has two permutations: $P=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$ and $Q=\left\{q_{1}, q_{2}, q_{3}, q_{4}\right\}$. He would like to partition P into four non-empty and contiguous parts in such a manner that:

- The numbers in each part can be rearranged to form an interval of values: an increasing sequence where each element is greater than the previous by exactly one.
- For all $1 \leq i<j \leq 4,\left(s_{i}-s_{j}\right) \cdot\left(q_{i}-q_{j}\right)>0$ where s_{i} is the minimum value in the i-th part.

Bobo wants to know the number of such partitions. As the number may be very large, you just need to print the answer modulo $\left(10^{9}+7\right)$.

Input

The input contains zero or more test cases, and is terminated by end-of-file. For each test case:
The first line contains an integer n, the length of the first permutation ($4 \leq n \leq 10^{6}$).
The second line contains n integers $p_{1}, p_{2}, \ldots, p_{n}$.
The third line contains four integers $q_{1}, q_{2}, q_{3}, q_{4}$.
It is guaranteed that the sum of all n does not exceed 10^{6}.

Output

For each test case, output an integer denoting the answer.

Example

standard input	standard output
10	0
21431098756	84
2413	
10	
12345678910	
1234	

Problem J. Hamiltonian k-vertex-connected Graph

Input file:
Output file:
standard input
Time limit:
standard output
Memory linit
1 second
Memory limit: $\quad 512$ mebibytes
A graph (other than a complete graph) has connectivity k if k is the size of the smallest subset of vertices such that the graph becomes disconnected if you delete them.

A connected undirected graph G is called Hamiltonian if it has a Hamiltonian cycle: a cycle that visits each vertex exactly once (except for the vertex that is both the start and the end, which is visited twice).

Bobo would like to construct a Hamiltonian graph with n vertices which has connectivity k. Also, the number of edges in the graph should be minimum possible.

Input

The first line contains two integers n and k where n is the number of vertices in the graph ($3 \leq n \leq 100$, $1 \leq k \leq n-2$).

Output

If there is no such graph, output -1 on a single line. Otherwise, output an integer m denoting the minimum number of edges. Then in each of the next m lines, output two integers x and y ($1 \leq x, y \leq n$, $x \neq y$) denoting an edge in the graph. In the following line, output a permutation of integers $1,2, \ldots, n$ denoting a Hamiltonian cycle in the graph.

Example

	standard input		standard output	
42	4			
	1	2		
	2	3		
	3	4		
	4	1		
	1	2	3	4

Problem K. Verifying $A+B$

Input file: standard input
Output file: standard output
Time limit:
Memory limit:
2 seconds
512 mebibytes
Given a sum in form $a+b=c$, your job is to determine, if the string, containing it, does not have typos and that sum is correct

Input

The first and the only line of input contains a string, consisting of five space-separated elements: integer a, operation sign s_{1}, integer b, equation sign s_{2} and integer c. It is guaranteed that integers are between 1 and 100 , inclusive and both signs have ASCII codes between 33 and 126 , inclusive.

Output

If operation sign equals to ' + ', equation sign equals to ' $=$ ' and $a+b=c$, print ' YES '.
Otherwise print ' NO '.

Example

standard input	standard output
$2+2=4$	YES
$2 * 2=4$	NO
$4=2+2$	NO

Problem L. Make A Square

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	512 mebibytes

You want to make a square out of three colored rectangles of glass. You are given the sizes of the three panes of glass. Can you arrange them into a square? You may rotate the panes, but the panes may not overlap.

Input

The input consists of three lines. Each of the three lines gives the length and height of a pane of glass. It is guaranteed that the lengths and heights are integers between 1 and 100 , inclusive.

Output

Print, on a single line, "YES", if the panes of glass can be combined to form a square; otherwise, print "NO".

Example

	standard input		standard output
9	2	YES	
1	7	7	
8	7		

Problem M. Two Strings

Input file: standard input
Output file: standard output
Time limit: 2 seconds
Memory limit: $\quad 512$ mebibytes
Given two strings, each consisting of the lowercase English letters, you are to compare their weight.
String s_{1} is considered heavier, than string s_{2}, if s_{1} has more occurences of letter ' z ' than s_{2} does. If they have the same number of ' z ', string s_{1} is heavier, if it have the same number of ' y ' etc. If those two strings are the anagrams, then their weight is considered equal.
Given two strings, calculate which one is heavier.

Input

First line of the input consists one integer n - number of test cases. Each test case consisting of two lines. First line contains string s_{1}, second line contains string s_{2}. Strings are non-empty; length of each string does not exceed 70 .

Output

For each test case, if first string is heavier, than second, print 1 , if their weight is equal,print 0 , if second string is heavier, than first, print -1 .

Example

	standard input
syzz	1
axbycz	-1
ay	0
by	
zxzx	
xzxz	

Problem N. Count them!

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	512 mebibytes

Given a list of points by their coordinated, determine how many triangles (with all angles strictly less than 180°) can be formed with those points.

Input

The first line of the input will contain an integer $n(1 \leq n \leq 50)$, denoting the number of test cases in the file.
The first line of each test case contains one integer, $k(1 \leq k \leq 100)$, denoting the number of points for that test case. The second line of each test case contains k ordered pairs of integers (separated by spaces) denoting the x and y coordinates of each point, respectively.
It is guaranteed that $-100 \leq x \leq 100$ and $-100 \leq y \leq 100$ for all coordinates. It is also guaranteed that each point given will be unique.

Output

For each test case, print one integer: number of formed triangles.

Example

standard input	standard output
2	3
4	0
11223444	
3	
246879	

