
Hello Barcelona Programming Bootcamp
Day 1, XVII Open Cup Stage 10: GP of Gomel (Division B), Monday, February 6, 2017

Problem A. Ascent Sequences (Div. 2 Edition)

Input file: standard input

Output file: standard output

Time limit: 2 seconds
Memory limit: 512 mebibytes

Consider a sequence 〈a1, a2, . . . , an〉 of non-negative integers. An ascent in the sequence is a pair of
adjacent elements such that the element with greater index has greater value. For example, there are two
ascents in sequence 〈0, 2, 3, 1, 0〉: a1 = 0 to a2 = 2, and a2 = 2 to a3 = 3. Let us denote the number of
ascents among the first k elements of the sequence by Ak. In the given example, A1 = 0, A2 = 1, A3 = 2,
A4 = 2 and A5 = 2.

Sequence a is called an ascent sequence if a1 = 0 and for every i ≥ 2 inequality ai ≤ Ai−1 + 1 is satisfied.
For example, sequence 〈0, 2, 3, 1, 0〉 is not an ascent sequence because a2 = 2 and A1 = 0. Sequence
〈0, 1, 0, 2, 3〉 is, in turn, an ascent sequence because A1 = 0, A2 = 1, A3 = 1, A4 = 2.

Sequence 〈a1, a2, . . . , an〉 of non-negative integers avoids pattern 201 if there are no i, j and k such that
i < j < k and aj < ak < ai. For example, sequence 〈0, 1, 0, 2, 3〉 avoids pattern 201, while 〈0, 1, 2, 3, 1, 0, 2〉
does not avoid pattern 201 because for i = 4, j = 6, k = 7 we have aj = 0 < ak = 2 < ai = 3.

You are given a single integer n. Find the number of ascent sequences of length n avoiding pattern 201.

Input

The only line of the input contains a single integer n (1 ≤ n ≤ 15).

Output

Output a single integer — the number of ascent sequences of length n avoiding pattern 201.

Examples

standard input standard output

3 5

5 52

14 65369590

Note

In the first example test case, there are five ascent sequences of length 3 avoiding pattern 201: 〈0, 0, 0〉,
〈0, 0, 1〉, 〈0, 1, 0〉, 〈0, 1, 1〉, 〈0, 1, 2〉.
In the second example test case, there are 53 ascent sequences of length 5 and all of them except
〈0, 1, 2, 0, 1〉 avoid pattern 201.

Page 1 of 11



Hello Barcelona Programming Bootcamp
Day 1, XVII Open Cup Stage 10: GP of Gomel (Division B), Monday, February 6, 2017

Problem B. Buggy Combination Lock (Div. 2 Edition)

Input file: standard input

Output file: standard output

Time limit: 2 seconds
Memory limit: 512 mebibytes

You’re a full-time bomb defuser. Your duties include keeping talking and not letting anyone explode.

This time, you’re stumbled upon the last obstacle before defusing the bomb — a combination lock. The
lock contains two rotating discs, with each of the discs containing all integers between 0 and m − 1,
inclusive, in increasing order. One forward rotation of a disc causes the number on it to increase by one
(except when the number on the disc is m − 1, it changes to 0). Similarly, one backward rotation of a
disc causes the number on it to decrease by one (except when the number on the disc is 0, it changes to
m− 1).

You see the initial state of the lock, and you perfectly know the code combination which opens the lock.
Unfortunately, the lock is buggy. Whenever you rotate either disc forward or backward, the other disc
gets rotated in the same direction as well.

On one hand, this might help you open the lock sooner; on the other hand, this might prevent you
from opening the lock at all; who knows? Well, of course you do. Find the minimum number of disc
rotations you need to perform to open the lock, or determine that it’s impossible (and someone is about
to explode).

Input

The first line of the input contains a single integer m (2 ≤ m ≤ 100) — the range of numbers on the
discs. The second line contains two integers a1 and a2 (0 ≤ ai < m) — the initial numbers on the first
and the second disc, respectively. The third line contains two integers b1 and b2 (0 ≤ bi < m) — the
target numbers on the first and the second disc, respectively.

Output

If it’s impossible to open the lock, output −1. Otherwise, output a single integer — the minimum number
of disc rotations you need to perform to open the lock.

Examples

standard input standard output

6

5 2

0 3

1

7

4 1

1 5

3

10

7 7

3 5

-1

Note

In the first example test case, the fastest way to open the lock is to rotate the discs forward once.

In the second example test case, the fastest way to open the lock is to rotate the discs backward three
times.

In the third example test case, whichever disc you rotate, the numbers on the discs will always remain
equal.

Page 2 of 11



Hello Barcelona Programming Bootcamp
Day 1, XVII Open Cup Stage 10: GP of Gomel (Division B), Monday, February 6, 2017

Problem C. Cyclic Shifts (Div. 2 Edition)

Input file: standard input

Output file: standard output

Time limit: 2 seconds
Memory limit: 512 mebibytes

Let s = s1s2 . . . sk be a string of length k. For any integer i between 0 and k− 1, inclusive, we define the
i-th cyclic shift of s as the string si+1si+2 . . . sks1 . . . si. For example, the 4-th cyclic shift of “wellplayed”
is “playedwell”, while the 0-th cyclic shift of “metro” is “metro” itself.

Let’s define a function f(s) which, for a string of length k, is equal to i such that the i-th cyclic shift
of s is the lexicographically smallest among all its cyclic shifts. If there are several such i’s, then f(s) is
equal to the smallest of them. For example, f(“acabbac”) = 2, while f(“cabcab”) = 1.

Let’s define a function g(s) which, for a string of length n, is equal to the sum of f(s1s2...sk) · 10k−1 over
all k between 1 and n, inclusive.

For the given string s, find the value of g(s).

Input

The only line of the input contains a non-empty string s consisting of lowercase English letters.

The length of s doesn’t exceed 9.

Output

Output a single integer — the value of g(s).

Examples

standard input standard output

aab 0

acabbac 2522200

bababa 111110

abacaba 6440200

z 0

Note

In the first example test case, f(“a”) = 0, f(“aa”) = 0, and f(“aab”) = 0. Therefore, g(“aab”) = 0.

Here is the list of values of f(s1s2 . . . sk) for the second example test case:

• f(“a”) = 0;

• f(“ac”) = 0;

• f(“aca”) = 2;

• f(“acab”) = 2;

• f(“acabb”) = 2;

• f(“acabba”) = 5;

• f(“acabbac”) = 2.

Thus, g(“acabbac”) = 2 · 102 + 2 · 103 + 2 · 104 + 5 · 105 + 2 · 106 = 2522200.

Page 3 of 11



Hello Barcelona Programming Bootcamp
Day 1, XVII Open Cup Stage 10: GP of Gomel (Division B), Monday, February 6, 2017

Problem D. Distribution of Prize Money (Div. 2 Edition)

Input file: standard input

Output file: standard output

Time limit: 2 seconds
Memory limit: 512 mebibytes

The most famous Zurumbian programming contest, Zurumbia Open, has been recently held online. The
total prize fund of the contest is x Zurumbian roubles!

There were five contestants taking part, and each of them was ranked from 1-st to 5-th. No two contestants
had the same rank.

Unfortunately, the distribution of prize money among the contestants is not known yet. It’s only known
that every contestant will receive a non-negative integer amount of Zurumbian roubles, and no contestant
will receive less money than another contestant with greater rank.

Some of the contestants are your friends. You’ve decided to find the least possible part of the prize fund
which will be definitely received by them in total, among all valid distributions of prize money. Also,
you are interested in the worst distribution — that is, the one that leads to the least possible amount of
money received by your friends. Write a program to help yourself.

Input

The first line of the input contains a single integer x (1 ≤ x ≤ 25) — the total prize fund, in Zurumbian
roubles. The second line contains a string of length 5 consisting of uppercase English letters “Y” and “N”
only. The i-th (1-based) character of the string equals to “Y” if the contestant ranked i-th is your friend,
and “N” otherwise.

Output

Output two lines.

The first line must contain the least possible amount of money, in Zurumbian roubles, which will be
definitely received by your friends in total.

The second line must contain a non-increasing sequence of five non-negative integers — the prizes of the
contestants ranked first, second, ..., 5-th in the worst distribution of prize money. The sum of these five
integers must be equal to x. If there are several worst distributions, you may output any of them.

Example

standard input standard output

23

YNYNN

10

5 5 5 4 4

Note

In the distribution from the example test case, your friend ranked first will receive 7 Zurumbian roubles,
and the third-ranked one will receive 3 Zurumbian roubles, resulting in the grand total of 10 Zurumbian
roubles received by your friends. It can be proved that in any distribution of prize money, your friends
will always receive at least 10 Zurumbian roubles.

Page 4 of 11



Hello Barcelona Programming Bootcamp
Day 1, XVII Open Cup Stage 10: GP of Gomel (Division B), Monday, February 6, 2017

Problem E. Exclusive Training

Input file: standard input

Output file: standard output

Time limit: 4 seconds
Memory limit: 512 mebibytes

You’re managing “Squash It”, an elite squash club. There are n players in your club, the i-th of them
has club rating ri and pleasantness pi.

You’re looking to conduct an exclusive training with one of your players as the leader and several other
lower-rated players as the learners. Let’s number the upcoming days in such a manner that tomorrow has
index 1, the day after tomorrow has index 2, and so on. Being informed about your plans, each player
provided a range of day indices [ai; bi] such that he will be able to attend the training only if it is held
on any of the days between ai and bi, inclusive.

Not only do you want the training to be useful for the attendees, but also you want it to be as pleasant as
possible. Of course, it will be too harsh to tell someone he’s not invited simply because he’s not pleasant
enough. Instead, you can set an upper bound on the rating of the invitees, announcing that this training
is designed for low-rated players.

For each player i, you’d like to find a way to organize the training in such a way that the total pleasantness
of the invited players is as high as possible. You’re able to choose any day between ai and bi, inclusive,
and any rating bound lower than ri. Then, you will invite everyone who can attend the training on the
chosen day and whose rating is not higher than the chosen upper bound (and, of course, the i-th player
himself). Note that you can even set the upper bound on rating to 0 — in this case, no one except the
leader will be invited, but sometimes that may be more pleasant than inviting that rude guy.

Input

The first line of the input contains a single integer n (1 ≤ n ≤ 2 ·105) — the number of players in “Squash
It”. Each of the next n lines contains four integers ri, pi, ai and bi (1 ≤ ri ≤ 106; −106 ≤ pi ≤ 106;
1 ≤ ai ≤ bi ≤ 106) — the club rating, the pleasantness and the range of day indices of the i-th player,
respectively.

All player ratings are pairwise distinct.

Output

For each player in order of input, output a single line containing the maximum possible total pleasantness
of training invitees in case this player is chosen to be the leader of the training.

Example

standard input standard output

4

15 22 2 5

13 -7 5 8

9 -5 3 7

12 13 5 6

30

1

-5

13

Note

In the example test case, if the training is held on day 5 with the first player as the leader and everyone
with rating not exceeding 12 invited, then the first, the third and the fourth players will receive an
invitation, resulting in the total invitee pleasantness of 30.

Page 5 of 11



Hello Barcelona Programming Bootcamp
Day 1, XVII Open Cup Stage 10: GP of Gomel (Division B), Monday, February 6, 2017

Problem F. Fruit Game
Input file: standard input

Output file: standard output

Time limit: 2 seconds
Memory limit: 512 mebibytes

Apfelmann and Bananenfrau are good friends. Today, Apfelmann brought some apples, and Bananenfrau
brought some bananas. Also, they found a coconut.

The friends decided to play a fruit game. They put their apples, bananas and the only coconut in a row
on a table. Players take turns, Apfelmann is the first to make a move.

An apple or a banana is considered tasty if and only if there is no other fruit lying on the table between
this apple or banana and the coconut.

On his turn, Apfelmann must take a tasty apple from the table and eat it. If there are no tasty apples
at the moment, Apfelmann skips his turn. Similarly, on her turn, Bananenfrau must take a tasty banana
from the table and eat it. If there are no tasty bananas at the moment, Bananenfrau skips her turn.

The player who eats all his or her fruit before the opponent does the same is declared to be the winner
of the game.

Given the initial placement of the fruit on the table, determine who will win the game if both players
play perfectly and strive to win.

Input

The first line of the input contains a single integer t (1 ≤ t ≤ 104) — the number of test cases.

Each of the next t lines contains a string consisting of uppercase English letters “A”, “B” and “C” — the
initial placement of the fruit in the row, in order from left to right. “A” stands for an apple, “B” stands
for a banana, and “C” stands for the coconut. There is at least one apple, at least one banana and exactly
one coconut in the row.

The total length of the input strings doesn’t exceed 106.

Output

For each test case, output a single line containing the name of the winner of the game.

Example

standard input standard output

3

AAACBB

CABAB

BBBBCBA

Bananenfrau

Apfelmann

Bananenfrau

Note

In the first example test case, Apfelmann and Bananenfrau take turns eating apples and bananas from
different sides of the coconut. There are less bananas than apples, therefore, Bananenfrau wins.

In the second example test case, the players eat apples and bananas in turns from left to right. Apfelmann
finishes with apples first.

In the third example test case, Apfelmann has to skip his first turn. Then, Bananenfrau has a choice
to eat either the banana to the left or the banana to the right of the coconut. Once Bananenfrau eats
the rightmost banana, Apfelmann will eat the only apple in the next turn and win. It’s better for
Bananenfrau to eat all the bananas to the left of the coconut first, one by one, making Apfelmann skip
his turns. After that Bananenfrau will be able to win by eating the rightmost banana.

Page 6 of 11



Hello Barcelona Programming Bootcamp
Day 1, XVII Open Cup Stage 10: GP of Gomel (Division B), Monday, February 6, 2017

Problem G. Greedy Coach

Input file: standard input

Output file: standard output

Time limit: 2 seconds
Memory limit: 512 mebibytes

A certain contest system contains n problemsets, numbered from 1 to n. Sometimes, the coach wants
to hold a training for a team of three of his students. Every training uses exactly one problemset. The
coach has to assign a problemset for the training such that none of the students on the team took part
in a training with the same set before. In case this is impossible, the training is not conducted.

Consider the following two greedy strategies of assigning a problemset to a team of students for training.

The first strategy, which we’ll call strategy A, is to assign the lowest-numbered problemset which hasn’t
yet been seen by any of the students on the team.

The second strategy, which we’ll call strategy B, is to assign the problemset which has been seen by the
largest number of students in total during the previous trainings and, at the same time, has not yet been
seen by any of the students on the team. In case there are several such problemsets, strategy B is to
assign the lowest-numbered of those.

We want to find out if one of the strategies is strictly better than the other. First, you’re asked to report
there’s none or find such integer n and such a sequence of team formations that strategy A allows to
assign problemsets for all trainings, while strategy B doesn’t allow to assign a problemset for at least one
training. Second, the same question is asked with regard to a situation where strategy B allows to assign
problemsets for all trainings while strategy A doesn’t.

Input

The only line of the input contains a single integer t (0 ≤ t ≤ 2). If t = 0, you’re allowed to output
either −1 or any valid sequence of team formations. If t = 1, you have to find a situation where
strategy A allows to assign problemsets for all trainings, while strategy B doesn’t. If t = 2, you have to
find a situation where strategy B allows to assign problemsets for all trainings, while strategy A doesn’t.

Test case 1 has t = 0, test case 2 has t = 1, and test case 3 has t = 2.

Output

If the required situation is impossible, output a single integer −1. Otherwise, output two integers n and q
(1 ≤ n ≤ 100; 1 ≤ q ≤ 104) — the number of problemsets and the number of trainings. Each of the
following q lines must contain three non-empty strings ai, bi and ci — the identificators of students on
the team. These lines should correspond to teams going for a training in chronological order. Student
identificators must consist of lowercase English letters and digits. Different identificators must belong
to different students, and each team must consist of three different students. It’s guaranteed that if the
required situation is possible, there also exists one with n ≤ 100 and q ≤ 104.

Example

standard input standard output

0 5 4

eatmore maxbuzz winger

cerealguy eatmore niyaznigmatul

cerealguy niyaznigmatul tourist

qwerty787788 tourist vartem

Note

In the example test case, if the coach follows any of the two strategies, the first and the third trainings
will be held on problemset 1, while the second and the fourth trainings will be held on problemset 2.

Page 7 of 11



Hello Barcelona Programming Bootcamp
Day 1, XVII Open Cup Stage 10: GP of Gomel (Division B), Monday, February 6, 2017

Problem H. Highly Composite Permutations

Input file: standard input

Output file: standard output

Time limit: 2 seconds
Memory limit: 512 mebibytes

Positive integer x is called composite if it has strictly more than two positive integer divisors. For example,
integers 4, 30 and 111 are composite, while 1, 7 and 239 are not.

Integer sequence p = 〈p1, p2, . . . , pn〉 is called a permutation of length n if it contains every integer between
1 and n, inclusive, exactly once.

We’ll call permutation p = 〈p1, p2, . . . , pn〉 highly composite if for every i between 1 and n, inclusive, the
sum of the first i elements of p (that is, p1 + p2 + . . . + pi) is composite.

Given a single integer n, find a highly composite permutation of length n.

Input

The only line of the input contains a single integer n (1 ≤ n ≤ 100).

Output

If no highly composite permutation of length n exists, output a single integer −1. Otherwise, output n
integers p1, p2, . . . , pn such that p = 〈p1, p2, . . . , pn〉 is a highly composite permutation.

If there are multiple highly composite permutations of length n, you may output any of them.

Examples

standard input standard output

13 9 13 6 5 3 2 8 4 1 12 11 10 7

2 -1

Note

In the first example test case, the first element of the permutation, 9, is composite, the sum of the first
two elements of the permutation, 9 + 13 = 22, is composite, the sum of the first three elements of the
permutation, 9 + 13 + 6 = 28, is composite, and so on.

In the second example test case, only two permutations of the required length exist, 〈1, 2〉 and 〈2, 1〉, and
neither of them is highly composite.

Page 8 of 11



Hello Barcelona Programming Bootcamp
Day 1, XVII Open Cup Stage 10: GP of Gomel (Division B), Monday, February 6, 2017

Problem I. Inversions in Lexicographical Order (Div. 2 Edition)

Input file: standard input

Output file: standard output

Time limit: 2 seconds
Memory limit: 512 mebibytes

An inversion in permutation p = 〈p1, p2, . . . , pn〉 is a pair of integers (i, j) such that i < j and pi > pj .

Consider a lexicographical order on positive integers. Under this ordering, integers are compared lexico-
graphically as strings of digits. For example, 628 comes before 7, 239 comes before 271, and 42 comes
before 427.

You are given a single positive integer n. Let’s sort all integers from 1 to n, inclusive, in lexicographical
order. We’ll get a permutation p of length n, where p1 is the lexicographically smallest integer between
1 and n (actually, p1 = 1 for any n), p2 is the second smallest one, and so on.

How many inversions does p contain?

Input

The only line of the input contains a single integer n (1 ≤ n ≤ 99).

Output

Output a single integer — the number of inversions in p.

Examples

standard input standard output

11 16

42 225

5 0

Note

Indeed, in the first example test case, p = 〈1, 10, 11, 2, 3, 4, 5, 6, 7, 8, 9〉 contains 16 inversions.

Page 9 of 11



Hello Barcelona Programming Bootcamp
Day 1, XVII Open Cup Stage 10: GP of Gomel (Division B), Monday, February 6, 2017

Problem J. Jogging in the Park

Input file: standard input

Output file: standard output

Time limit: 2 seconds
Memory limit: 512 mebibytes

The Outer Park is very well suited for jogging. Inside the park, there are n glades, conveniently numbered
from 1 to n. The glades are connected by m trails, the i-th trail connects glades ai and bi and has length
ci meters. All trails can be walked in both directions. The main entrance is situated at glade 1.

Your friends decided to have a nice run together over the park. Each of them prepared her own route
starting from the entrance and moving to subsequent glades by trails.

At the end of jogging, all your friends want to reach glade n with a beautiful cafe at the same time. Not
everyone planned her route accordingly, though: some of the routes do not end at glade n, and the routes
might have different length as well. Luckily, all your friends run at the same speed.

You decided to help your friends and write a program to provide each of them with an extended route —
that is, a route which starts with the same sequence of glades as her original one, but ends at glade n
and has exactly the same length, in meters, as all the other extended routes. Note that both the original
and the extended routes may contain the same trail multiple times.

Input

The first line of the input contains two integers n and m (2 ≤ n ≤ 50; 1 ≤ m ≤ n(n−1)
2 ) — the number of

glades and trails in the park. Each of the next m lines contains three integers ai, bi and ci (1 ≤ ai, bi ≤ n;
ai 6= bi; 1 ≤ ci ≤ 106) — the indices of glades connected by the i-th trail and its length, respectively.

The next line of the input contains a single integer k (2 ≤ k ≤ 50) — the number of your jogging friends.
Each of the next k lines contains an integer li (2 ≤ li ≤ 50) — the number of glades in the route of your
i-th friend, followed by li integers gi,1, gi,2, . . . , gi,li (1 ≤ gi,j ≤ n) — the indices of glades in the route.

All unordered pairs (ai, bi) are distinct. For every i, gi,1 = 1. For every j between 1 and li − 1, there
exists a trail between glades gi,j and gi,j+1.

Output

If it is impossible to extend all the routes according to the problem statement, output a single integer
−1. Otherwise, print k lines. The i-th of these lines must contain an integer pi (pi ≥ li) followed by pi
integers hi,1, hi,2, . . . , hi,pi (1 ≤ hi,j ≤ n) — the indices of glades in the i-th extended route.

For every i, hi,pi must be equal to n. For every j between 1 and pi − 1, there must exist a trail between
glades hi,j and hi,j+1. For every j between 1 and li, hi,j must be equal to gi,j . The total length of all the
extended routes, in meters, must be the same.

The sum of all pi must not exceed 2 · 106. It is guaranteed that if a valid route extension exists, there
also exists one with the sum of all pi not exceeding 2 · 106.

Example

standard input standard output

4 4

1 2 10

2 3 30

2 4 30

1 4 100

3

2 1 2

3 1 2 3

2 1 4

5 1 2 4 2 4

5 1 2 3 2 4

2 1 4

Page 10 of 11



Hello Barcelona Programming Bootcamp
Day 1, XVII Open Cup Stage 10: GP of Gomel (Division B), Monday, February 6, 2017

Problem K. Keep Distance

Input file: standard input

Output file: standard output

Time limit: 3 seconds
Memory limit: 512 mebibytes

You are participating in an infamous TV-show. Show participants are usually asked to do ridiculous
stuff, and you’re not an exception.

Right now, there are several colored cubes arranged in a single row in front of you. Your quest goes as
follows. The show host announces her favorite color among those present on the cubes. Then, you have
to rearrange the cubes as fast as possible in such a way that the row becomes beautiful with regard to
the host’s favorite color.

Let’s number the cubes in the row with 1, 2, ... from left to right. Suppose there are k cubes of color c
in the row, namely, at positions p1 < p2 < . . . < pk. The row is called beautiful with regard to color c if
the neighboring cubes of this color are placed at equal distances from each other, that is, if the following
equation is satisfied: p2 − p1 = p3 − p2 = . . . = pk − pk−1. Note that if k ≤ 2, the row is beautiful with
regard to color c as well.

During the rearrangement of the cubes, you’re only allowed to perform the following operation any
number of times: take out any two cubes of different colors and exchange their positions in the row. Note
that these two cubes do not have to be adjacent.

You already see the row of the cubes but you don’t know the favorite color of the host. Now that there’s
still some time before the ultimate quest, you decided to calculate the minimum number of cube swaps
required to make the row beautiful with regard to every present color.

Input

The first line of the input contains a single integer t (1 ≤ t ≤ 2 500) — the number of test cases.

Each of the next t lines contains a non-empty string consisting of lowercase English letters, representing
the colors of the cubes in the row in order from left to right. Here, “a” stands for amaranth, “b” stands
for bittersweet, “c” stands for crimson, and so on.

The total length of the input strings doesn’t exceed 250 000.

Output

For each input row, output a sequence of integers. For every color in order from “a” to “z” present in
the row, output the minimum number of swaps required to make the row beautiful with regard to this
color.

Example

standard input standard output

1

vvrrcvrvvr

0 1 2

Note

In the example test case, the row is already beautiful with regard to crimson (“c”). To make the row
beautiful with regard to red (“r”), it’s enough to swap the first and the third cubes — the row will look
like “rvvrcvrvvr”. To make the row beautiful with regard to vermilion (“v”), it’s enough, for example,
to swap the first and the fifth cubes, and then swap the second and the seventh cubes — the row will
look like “crrrvvvvvr”.

Page 11 of 11


