
ACM International Collegiate Programming Contest 2015/16
XLIII St. Petersburg State University Championship, Sunday, December 20, 2015

Problem A. (a, b)-Tower (Division 2)
Input file: abtower.in

Output file: abtower.out

Time limit: 1 second
Memory limit: 256 mebibytes

Little Artem is pondering the following question: how to write only few digits and yet get a very
large number? One of the answers, of course, is to write a tower of powers. Recall that a tower of
powers is calculated from top to bottom: in an expression of the form xy

z , first, yz is calculated, and
after that, x is raised to that power. For example, the small tower 23

4 is equal to the huge number
23·3·3·3 = 281 = 2417 851 639 229 258 349 412 352.

Artem wrote down integers from a to b diagonally, moving upwards and to the right. This resulted in a
tower of powers:

a(a+1)·
··
(b−1)b

.

Help him find the last decimal digit of this, possibly huge, number.

Input
The first line of input contains two integers a and b, the parameters of the tower (1 ≤ a ≤ b ≤ 10).

Output
Print one integer: the last decimal digit of the number

a(a+1)·
··
(b−1)b

.

Examples
abtower.in abtower.out

2 4 2

3 3 3

Explanations
In the first example, the number is 23

4
= 281 = 2417 851 639 229 258 349 412 352. The last decimal digit

of this number is 2.

In the second example, the number is just 3, and the last and only decimal digit of this number is 3.

Problem A (Div. 2) Developer: Ivan Kazmenko Page 1 of 12

ACM International Collegiate Programming Contest 2015/16
XLIII St. Petersburg State University Championship, Sunday, December 20, 2015

Problem B. Bridges Construction (Division 2)
Input file: connection-probability.in

Output file: connection-probability.out

Time limit: 1 second
Memory limit: 256 mebibytes

In one country, a tender must be held for all important contracts. “Cat in Tank, Inc.” won a contract for
constructing a system of bridges over a river. The contract states that the system must connect R ·C pile
foundations which form a grid of R rows by C columns on the river. The first column of piles is located
on the left side, and the last column is located on the right side.

(2,0) (2,1) (2,2) (2,3)

(1,0) (1,1) (1,2) (1,3)

(0,0) (0,1) (0,2) (0,3)

According to the initial plan, the system must consist of all bridges which connect all neighboring piles
located in same rows and all neighboring piles located in same columns except for leftmost and rightmost
columns (who constructs bridges along the coast anyway?). Well, it turned out to be not that easy. “Cat
in Tank, Inc.” specializes in programming and has no clue about bridge construction. In order to increase
the chance of completing the project, they hired a separate contractor for every bridge. For each bridge,
the probability that it will be finished on time by its contractor is also known.

Construction is considered complete if it is possible to get from the left side of the river to the right side
using only the bridges built on time. Your task is to calculate the probability of work completion.

Input
The first line contains two integers: R and C (in this version of the problem, R = 3 and C = 4).

Next R lines contain C − 1 numbers each: probabilities of timely completion of the bridges connecting
neighboring piles located in the same row. Here, j-th number on i-th of these lines is the probability of
building the bridge between piles (i− 1, j − 1) and (i− 1, j) on time.

Next R−1 lines contain C−2 numbers each: probabilities of timely completion of the bridges connecting
neighboring piles located in the same column. Here, j-th number on i-th line is the probability of building
the bridge between piles (i− 1, j) and (i, j) on time.

All probabilities are integer percentages between 1 and 99.

Problem B (Div. 2) Developer: Pavel Kunyavskiy Page 2 of 12

ACM International Collegiate Programming Contest 2015/16
XLIII St. Petersburg State University Championship, Sunday, December 20, 2015

Output
Let the expected probability of timely completion of a system of bridges that connects left and right sides
of the river be equal to p

q where p and q are coprime. Output a single integer: the number (p · q−1) mod

(109 + 7). It is guaranteed that q is not a multiple of 109 + 7 in all tests.

Examples
connection-probability.in connection-probability.out

3 4

50 50 50

50 50 50

50 50 50

50 50

50 50

500000004

Note
One may perform all probability-related calculations in a finite field of order 109 + 7 instead of the field
of reals. It is possible to prove that such modification is equivalent to calculation of p and q and taking
them modulo 109 + 7 in the end.

The answer for the example is 1
2 .

Problem B (Div. 2) Developer: Pavel Kunyavskiy Page 3 of 12

ACM International Collegiate Programming Contest 2015/16
XLIII St. Petersburg State University Championship, Sunday, December 20, 2015

Problem C. Equivalence Relation (Division 2)
Input file: equivalence.in

Output file: equivalence.out

Time limit: 1 second
Memory limit: 256 mebibytes

Egor is studying equivalence relations.

Equivalence relation on set S is such subset of R = {(x, y)|x ∈ S, y ∈ S} that three following conditions
hold:

• for each x, it is true that (x, x) ∈ R;
• if (x, y) ∈ R, then (y, x) ∈ R;
• if (x, y) ∈ R and (y, z) ∈ R, then (x, z) ∈ R.

It is easy to show that, given these conditions, set S can be split into several classes of elements so that
elements of each class are pairwise equivalent and elements of different classes are not equivalent. Such
classes are called equivalence classes.

Let us consider the following equivalence relation on strings of zeroes and ones: strings are called equivalent
when one can be transformed to another using the following operations.

• Remove or insert two consecutive zeroes in any position of the string.
• Remove or insert three consecutive ones in any position of the string.

Operations can be performed any number of times in any order.

You are given a set of strings. Print its partition into equivalence classes.

Input
The first line contains an integer n (2 ≤ n ≤ 4096). Each of the next n lines contains one string from the
set. All strings are non-empty, and their total length is at most 50 000 characters.

Output
On the first line, print one integer k: the number of equivalence classes. On the next k lines, print the
classes themselves. Each class must be printed in the following form: print the numbers of its elements in
increasing order. Classes must be printed in the order of increasing of their miminal elements. Strings are
numbered from one in the order they are given.

Example
equivalence.in equivalence.out

5

0101010101

101010110101011

0101

0000

111

4

1

2

3

4 5

Problem C (Div. 2) Developer: Pavel Kunyavskiy Page 4 of 12

ACM International Collegiate Programming Contest 2015/16
XLIII St. Petersburg State University Championship, Sunday, December 20, 2015

Problem D. Formula-1 (Division 2)
Input file: hamilton-clique.in

Output file: hamilton-clique.out

Time limit: 1 second
Memory limit: 256 mebibytes

Famous Formula-1 driver Lewis Hamilton is currently training for the next race. He has a special circualar
training ground for this. There are N checkpoints evenly placed on the perimeter and numbered from 1
to N . The main coach advised Lewis to drive between every pair of different checkpoints exactly once.
The direction for each pair is not important.

Because Formula-1 tracks are circular, Lewis wants to drive every day through all checkpoints in some
order and return back. He soon realized that he can do this no more than N−1

2 days in a row. He is very
busy with his training, so he asked you to make a plan for each of this days or say that it is impossible.
To prevent problems with rounding, the main coach made N odd.

Input
The first line contains one odd integer N (3 ≤ N ≤ 500).

Output
The first line must contain only one word “Yes” if it is possible to make such a plan, or “No” otherwise.
In case the answer is positive, each of the next N−1

2 lines must contain N different integers from 1 to N :
the circular tracks for each day. If there are several possible answers, print any one of them.

Example
hamilton-clique.in hamilton-clique.out

5 Yes

1 2 3 4 5

1 3 5 2 4

Problem D (Div. 2) Developer: Roman Andreev Page 5 of 12

ACM International Collegiate Programming Contest 2015/16
XLIII St. Petersburg State University Championship, Sunday, December 20, 2015

Problem E. Ideal Photo (Division 2)
Input file: make-a-row.in

Output file: make-a-row.out

Time limit: 1 second
Memory limit: 256 mebibytes

It is that time of the year again... UEFA Champions League final match will start in just a few minutes.
This year, Real Madrid CF will try to win the trophy back from Chelsea FC. Tradition states that both
teams sing their national anthems first. To do this, all players, coaches and team staff (in total, there are
N people in each team) form two lines, each team stands on their half of the field. The two halves are
divided by the middle line y = 0. Real Madrid members will stand somewhere on the line y = 1, and
Chelsea members on the line y = −1. From the photo taken by a helicopter, we can see that right now,
i-th member of the Real has coordinates (ri, 1), and i-th member of Chelsea has coordinates (ci,−1).

After the anthems, everybody should stand on the middle line for group photo. The main photographer
decided that all of them should form a row such that the distance between any two consecutive people
in the row is exactly 1. You task is to say to every person where he or she should be standing, and they
will move there. To make your task more interesting, you are additionally asked to minimize the sum of
distances travelled by each person.

Input
The first line contains one integer N (1 ≤ N ≤ 100). The second line contains N integers ri
(−106 ≤ ri ≤ 106). The third line contains N integers ci (−106 ≤ ci ≤ 106). All ri are different, all
ci are also different.

Output
Output one real number: the minimal sum of distances travelled by each person.

Your answer will be considered correct if its absolute or relative error does not exceed 10−9. In more
detail, let us assume that your answer is a, and the answer of the jury is b. The checking program will
consider your answer correct if |a−b|

max(1,b) ≤ 10−9.

Example
make-a-row.in make-a-row.out

3

1 4 5

-1 3 5

7.3730791040629358

Explanation
In the example, the optimal way is to put people in the row with coordinates: (0.3964673051113727, 0),
(1.3964673051113727, 0), . . ., (5.3964673051113727, 0).

Problem E (Div. 2) Developer: Roman Andreev Page 6 of 12

ACM International Collegiate Programming Contest 2015/16
XLIII St. Petersburg State University Championship, Sunday, December 20, 2015

Problem F. (p, q)-Knight (Division 2)
Input file: pqknight.in

Output file: pqknight.out

Time limit: 1 second
Memory limit: 256 mebibytes

A (p, q)-knight stands at some cell of a flat chessboard which is infinite in all directions. In a single step,
such knight can move from cell (r, c) to any of the cells (r ± p, c ± q) and (r ± q, c ± p). In particular, if
p and q are different positive integers, such knight has eight possible moves from each cell. The regular
chess knight is a special case of a (p, q)-knight for p = 1 and q = 2 (or p = 2 and q = 1).

What is the minimum required number of steps a (p, q)-knight has to make to arrive at a cell which shares
a single side with the starting cell?

Input
The first line of input contains two integers p and q, the parameters of the knight (0 ≤ p, q ≤ 100).

Output
Print one integer: the minimum required number of steps a (p, q)-knight has to make to arrive at a cell
which shares a single side with the starting cell. If the knight can never arrive at such a cell, print the
number −1.

Examples
pqknight.in pqknight.out

2 1 3

1 1 -1

Explanations
In the first example, the regular chess (2, 1)-knight can move from any cell (r, c) to eight possible cells in
a single step: (r−2, c−1), (r−1, c−2), (r+1, c−2), (r+2, c−1), (r+2, c+1), (r+1, c+2), (r−1, c+2),
and (r− 2, c+1). If, for example, the knight starts at cell (0, 0), the first step can bring him to (1, 2), the
second one to (−1, 1), and the third one to (1, 0). The cell (1, 0) shares a single side with the starting cell
(0, 0). The task is completed in three steps. It can be checked that two or less steps will not be enough.

In the second example, the (1, 1)-knight can move from any cell (r, c) to four possible cells in a single
step: (r− 1, c− 1), (r− 1, c+ 1), (r+ 1, c+ 1), and (r+ 1, c− 1). If the cells are painted in checkerboard
order (a white cell shares sides with black cells, a black cell with white cells), such knight can only visit
cells of the same color as the starting cell, but the target cells have different color.

Problem F (Div. 2) Developer: Ivan Kazmenko Page 7 of 12

ACM International Collegiate Programming Contest 2015/16
XLIII St. Petersburg State University Championship, Sunday, December 20, 2015

Problem G. Random Wormholes (Division 2)
Input file: standard input

Output file: standard output

Time limit: 1 second
Memory limit: 256 mebibytes

This is an interactive problem.

In the Foggy Way galaxy, there is an infinite number of stars which are numbered by integers. As a means
of fast travel between the stars, one can use wormholes: hyperspace tunnels connecting the stars. However,
not every pair of stars is connected by such a tunnel.

When the demiurge created Foggy Way, he set the common probability p of existence of a direct tunnel
from any star i to any star j, and then left the details to chance. The probability of existence of each
tunnel does not depend on the probabilities for other tunnels. All tunnels are directed, so when i ̸= j, the
tunnel from i to j is different from the tunnel from j to i, and each of them exists with probability p.

A starship is orbiting the star number 0. The navigational computer of the starship has limited
functionality: it accepts requests in the form “move to star x by a straight tunnel” where x is an integer
from 0 to 232 − 1. After receiving such request, if there indeed exists a direct tunnel from the star the
ship is currently orbiting to star x, the starship moves to star x, and the navigation panel shows the word
“yes”. Otherwise, the panel responds with “no”, and the starship remains in place.

The captain of the starship wants to arrive to the star number 1. You are the navigator of the starship.
Help the captain get to the required star!

Interaction Protocol
Your solution must print each request on a separate line to the standard output stream. A request is a
single integer x from 0 to 232 − 1: the number of the star to move to if there exists a direct tunnel from
the current star leading there.

To prevent output buffering, flush the output buffer after each request: this can be done by using, for
example, fflush (stdout) in C or C++, System.out.flush () in Java, flush (output) in Pascal or
sys.stdout.flush () in Python.

The response, which is either “yes” or “no”, is given to your solution via the standard input stream, also
on a separate line.

As soon as the starship arrives to the star number 1, your solution must immediately terminate gracefully.

After 30 000 requests to navigational computer, it runs out of electricity and does not respond to further
requests. In this case, the mission is failed.

In each test for this problem, the probability p is fixed as a percentage from 3 to 99. After that, for each
possible pair of stars, the existence of a tunnel between them is also fixed.

Example
participant’s requests checking program’s answers

1

3

3

1

no

yes

no

yes

Explanation
Please note that the participant’s output is displayed to the left, and the following input to the right.

The example illustrates the first test in the testing system. The probability of existence of each tunnel is
50%. There is no direct tunnel from star 0 to star 1. However, the starship successfully moves from star 0
to star 3. After that, the navigator tries to move from star 3 to itself, but there is no such tunnel. Finally,
it turns out that the tunnel from star 3 to star 1 exists, and the mission is accomplished.

Problem G (Div. 2) Developer: Pavel Kunyavskiy Page 8 of 12

ACM International Collegiate Programming Contest 2015/16
XLIII St. Petersburg State University Championship, Sunday, December 20, 2015

Problem H. Second Maximum (Division 2)
Input file: secondmax.in

Output file: secondmax.out

Time limit: 1 second
Memory limit: 256 mebibytes

“Cat in Tank, Inc.” wants to take over the world again. This time, they are going to use a special device
which generates random real numbers from l to r.

The device has a wonderful property: if one takes a segment located completely inside the segment from
l to r, the probability of getting a random point inside the segment depends on the length of the segment
only and equals to length

r−l .

The device will be used n times with possibly different values of l and r. We have no idea how this is
connected with taking over the world, but it is crucial for the company to know the expected value of the
second maximum among n occurred values. You certainly can calculate it, can’t you?

Recall that the second maximum of a sequence is the second value in the sequence after we sort it in
descending order.

Input
The first line contains an integer n (2 ≤ n ≤ 50). Next n lines contain two integers each: li and ri
(−100 ≤ li < ri ≤ 100).

Output
Output a single line with a single real number on it: the expected value of the second maximum.

Your answer will be considered correct if its absolute or relative error does not exceed 10−6. In more
detail, let us assume that your answer is a, and the answer of the jury is b. The checking program will
consider your answer correct if |a−b|

max(1,b) ≤ 10−6.

Example
secondmax.in secondmax.out

3

0 1

0 1

-1 0

0.3333333333333333

Problem H (Div. 2) Developer: Pavel Kunyavskiy Page 9 of 12

ACM International Collegiate Programming Contest 2015/16
XLIII St. Petersburg State University Championship, Sunday, December 20, 2015

Problem I. Ticket To Ride (Division 2)
Input file: ttr.in

Output file: ttr.out

Time limit: 1 second
Memory limit: 256 mebibytes

Oleg and his friends love to play the board game “Ticket To Ride”. In this game, each player builds his
own network of railways.

Attention! In this problem, the rules of “Ticket To Ride” are slightly different from the standard rules.
We recommend you to read the statement carefully even if you know the standard rules.

To build the network of railways, players use colored Train Car cards as resources. There are eight types
of colored Train Car cards, in quantities of 12 each, and 14 Locomotive cards (can be used as a card of
any color). The colors of each type of Train Car cards match the colors of various routes between cities
on the map: Purple, Blue, Orange, White, Green, Yellow, Black, and Red. Thus, there are 110 cards in
the deck.

As the game starts, the deck is shuffled and laid on the table face down. The first five cards are opened
and laid on the table face up in a row.

At the start of the game, each player has no cards. Players make moves in turn. Each player must choose
one of two alternatives:

• take several resource cards, or

• build a new route using resource cards from the player’s hand.

In one move, a player can take exactly two resource cards one by one, or only one resource card if he
takes an open Locomotive card. Each of the cards taken is either one of the five open cards or the top
card of the deck (in the latter case, other players won’t see what card was taken). If the player takes one
of the five open cards, it is immediately replaced by the next card of the deck. However, if the player
takes an open Locomotive card, it must be the only resource card taken in this move.

When the deck becomes empty, all discarded cards are reshuffled and become the new deck. If at some
point of time there are at least three Locomotive cards among the five open cards, all current open cards
are immediately discarded, and after that, new five cards are drawn from the deck.

In one move, a player can build exactly one route using some or all cards from his hand. The cards which
were used for building are immediately discarded and become known to other players. Each route requires
a certain amount of resource cards of certain colors, depending on its type and parameters. A route can
have one of the following types:

• simple route colored by one of the eight colors: to build it, a player needs length cards of color color ;

• simple uncolored route: to build it, a player needs length cards of any one color (the player can
choose any color he likes);

• ferry route: to build it, a player needs length cards of any one color (the player can choose any color
he likes), and at least L of them must be Locomotive cards.

When building a route, a player can use Locomotive card as a Train Car card of any color. So, for building
a simple blue route of length 3, a player can use three blue Train Car cards, or one blue Train Car cards
and two Locomotive cards, or three Locomotive cards. And for building a simple uncolored route of length
5, a player can use four red Train Car cards and one Locomotive card, but can not use three blue Train
Car cards and two orange Train Car cards.

During the game, it sometimes makes sense to know whether it is possible that a certain player can build
a certain route. Obviously, the players don’t know the order of the cards in the deck, and consequently
don’t always know which cards are in the hand of another player. But if one carefully tracks open and

Problem I (Div. 2) Developer: Eugene Kurpilyansky Page 10 of 12

ACM International Collegiate Programming Contest 2015/16
XLIII St. Petersburg State University Championship, Sunday, December 20, 2015

discarded cards, sometimes one can be pretty sure that another player has not got enough resources to
build a certain route.

Oleg decided to write a “Ticket To Ride” application where players can get answers to such questions. Of
course, the program must take into account what information is known and what information is hidden
from the player asking the question. Can you help Oleg to cope with this task?

Input
In this problem, there are eight core colors. The following names are used to describe them: purple, blue,
orange, white, green, yellow, black, and red. To describe each card taken from the deck, we use the
name of its color or the word locomotive.

The first line contains two integers n and m: the number of players and the number of following lines with
game description (2 ≤ n ≤ 5, 2 ≤ m ≤ 10 000).

The next line contains the description of cards which were put on the table at the start of the game.
This line takes the form open <five_cards>{1, 6} where five_cards are five words separated by spaces,
describing the five cards which were laid out on the table. Here and forth, the numbers in curly brackets
indicate the range of the number of possible repetitions of the preceding element, in this case, five_cards.
If there are at least three Locomotive cards on the table, new five cards are laid out, and so on. It is
guaranteed that in the tests for this problem, this situation arises no more than five times in a row. That
is why the description of the open command can contain 5, 10, 15, 20, 25 or 30 words.

After that, there are descriptions of the actions of the players and their questions, one per line.

• take blind <card_color>: the player took the top card from the deck face down, and this card was
card_color ;

• take <i> <card_color> <five_cards>{0, 5}: the player took i-th open card, and it was replaced by
card card_color ; additionally, this command supplies from zero to five lists of five cards for the case
when the open cards contain three or more Locomotive cards;

• build <color> <length> <card_numbers_list>: the player built a route colored by color with length
length using cards card_numbers_list ;

• build any <length> <card_numbers_list>: the player built an uncolored route with length length
using cards card_numbers_list ;

• build ferry <length> <L> <card_numbers_list>: the player built a ferry route with length length
which required L Locomotive cards using cards card_numbers_list ;

• ? <player> <color> <length>: can the player number player build a route colored by color with
length length;

• ? <player> any <length>: can the player number player build an uncolored route with length length;

• ? <player> ferry <length> <L>: can the player number player build a ferry route with length
length which requires L Locomotive cards.

In all these lines, the parameters satisfy the following restrictions: 1 ≤ i ≤ 5, 1 ≤ player ≤ n,
1 ≤ length ≤ 26, 1 ≤ L ≤ 14, L ≤ length. The value of color is the name of one of the eight colors. A list
card_numbers_list consists of length integers separated by spaces: the numbers of cards from a player’s
hand used for building a route. These numbers are listed in ascending order. Each player always keeps
the cards in his hand in the order in which he took them. Cards in a player’s hand are numbered from
one starting with the card which was taken before the rest.

Note that players take turns in sequence, so in the next action record, the number of the player making
the move is not specified: this information would be redundant. Each question is asked by the player who
has to do the next action. Asking questions does not count as an action.

Problem I (Div. 2) Developer: Eugene Kurpilyansky Page 11 of 12

ACM International Collegiate Programming Contest 2015/16
XLIII St. Petersburg State University Championship, Sunday, December 20, 2015

It is guaranteed that the described sequence of actions is correct and the players followed all the rules
described in this task. It is guaranteed that each build command contains the correct data to build a
route successfully.

Output
For each question “?”, print one of the two possible answers: “No” if the player in question surely can not
build such a route, or “Maybe” otherwise.

Example
ttr.in

3 16

open locomotive blue locomotive locomotive blue blue red purple locomotive blue

take blind blue

take blind blue

take 4 red

take blind blue

take 2 white

? 3 any 2

? 3 blue 2

build blue 1 1

? 1 blue 4

? 1 purple 1

? 2 ferry 1 1

? 2 red 1

take blind yellow

take blind orange

? 2 ferry 3 1

ttr.out

Maybe

No

No

Maybe

Maybe

Maybe

Maybe

Problem I (Div. 2) Developer: Eugene Kurpilyansky Page 12 of 12

