
ACM International Collegiate Programming Contest 2015/16
XLII St. Petersburg State University Championship, Saturday, October 10, 2015

Problem A. Bubbles
Input file: bubbles.in

Output file: bubbles.out

Time limit: 1 second
Memory limit: 256 mebibytes

Today is the Hexadecimal’s birthday!

She decided to entertain herself in an extremely awkward way: blowing bubbles. A bubble is a circle on
the plane.

Let us start with choosing a point on Ox axis and lets name this point a blowation center. Yep, the center
of all the bubbles will be a single point which is the blowation center.

After choosing the blowation center, we can start blowing bubbles. The i-th bubble is blowing until it
either touches the point (xi, yi) or touches the surface of any other bubble which is already blown. In the
case one bubble touches another one, a myriad of phantasmagorically illuminating splashes will appear,
and this is absolutely prohibited.

So, how many orders of blowing exist such that the absolutely prohibited thing does not happen?

Input
The number of bubbles n is given in the first line of input (1 ≤ n ≤ 1000).

Each of the following n lines contains a space-separated pair of integers. The i-th pair contains coordinates
of the i-th point (xi, yi) (1 ≤ xi, yi ≤ 100).

Output
Print the only integer, the number of allowed orders of blowing.

Examples
bubbles.in bubbles.out

2

3 3

7 3

2

3

1 1

2 4

9 2

4

Explanations
In the first example, it is possible to choose, for example, x = 0 for blowation point and blow bubbles in
the order (1, 2), or choose, for example, x = 10 for blowation point and blow bubbles in the order (2, 1).

In the second example, the possible orders are (1, 2, 3), (2, 1, 3), (2, 3, 1) and (3, 2, 1).

Problem A (Div. 1) Developer: Alex Kouprin Page 1 of 16

ACM International Collegiate Programming Contest 2015/16
XLII St. Petersburg State University Championship, Saturday, October 10, 2015

Problem B. Drop7
Input file: drop7.in

Output file: drop7.out

Time limit: 1 second
Memory limit: 256 mebibytes

Each workday, Eugene uses the subway to travel between home and work. It is very difficult to use internet
inside a subway train, so Eugene plays games on his iPad. His favorite game is Drop7.

It is highly recommended to read the description of game rules carefully even if you already played the
game Drop7. Game rules in this problem are slightly different from the original rules.

The game board is a rectangle which has 8 cells in height and 7 cells in width. Each cell of the board can
either be empty or contain one disc with digit between 1 and 7. Each disc could have zero, one or two
protection layers. Discs are affected by gravity force which is directed downwards. If the cell under some
disc is empty, this disc will be moved down by gravity.

Each player’s move is to throw one disc into one of the seven columns of the game board.

Discs on the board can explode according to the following rules. Disc with digit X without protection layers
will detonate and then explode if it belongs to horizontal and/or vertical line of exactly X consecutive
discs. Detonations will only happen at the moment when there are no more discs moving down by gravity.
At first, all the discs on the board satisfying the condition described above will simultaneously detonate,
then all these discs will simultaneously explode. A disc loses one protection layer when another disc has
exploded in a cell adjacent by an edge. Effects of explosions are added together, so a disc loses as many
protection layers as is the number of explosions happened in adjacent cells. A disc can not lose more
protection layers than it has. So, a disc without any protection layers can not lose them anymore.

After explosion of all detonated discs, some discs can start moving down by gravity. When they all stop,
it can lead to the next wave of explosions and fallings. The process continues until the remaining discs
stop to explode and fall.

The player starts the game on the first level. After several player moves, the player reaches the next level.
When it happens, all discs on the board move one cell up, and seven new discs appear in the bottom row.
This event can lead to detonation of some discs which can in turn lead to a chain of explosions. If some
disc appears in the highest row, the game stops immediately.

So, the player’s move can be described as follows:

• The player throws a new disc.

• If there is a disc in the highest row, the game stops.

• While there are detonated discs, the wave of explosions and fallings occurs.

• If the player reached the next level, the new discs appear in the bottom row.

• If there is a disc in the highest row, the game stops.

• While there are detonated discs, the wave of explosions and fallings occurs.

The player scores points for exploded discs depending on the number of the wave on which the disc
has exploded. The waves are enumerated starting from one, after each thrown disc the numbering is
started from one again, but when the player reaches the next level, the numbering continues. For each
disc exploded on the wave i, the player gets 7i3+72i2−73i+36

6 score.

There are two difficulty modes in the game: Normal and Hardcore. On Hardcore difficulty, the player
reaches the next level after each 5 moves and gets 17 000 score per each new level. On Normal difficulty,
the player needs 30 moves to reach the second level from the first, 29 moves to reach the third level from
the second, . . . , 6 moves to reach the 26-th level from the 25-th. After reaching the 26-th level, the player
needs 5 moves to reach each next level. On Normal, the player gets 7000 score per each new level.

Problem B (Div. 1) Developer: Eugene Kurpilyansky Page 2 of 16

ACM International Collegiate Programming Contest 2015/16
XLII St. Petersburg State University Championship, Saturday, October 10, 2015

Unfortunately, Eugene was unable to find this game anywhere except AppleStore. So he came to you and
asked you to write an emulator of the game Drop7. While you are writing the code, Eugene decided to
prepare test data for you. He started a new game, wrote the initial state of the board on the sheet of
paper and made some moves, logging all information needed to recover the game process. He wrote which
disc he threw and where he threw it on each move, and also he wrote which seven discs appeared in the
bottom row each time he reached the next level. If after some move he had reached the next level, he
always recorded the appeared discs even if it was the last move he did.

You are required to output the final state of the game using the information Eugene wrote.

Input
The first line of input describes the difficulty setting, so there are two possible cases: “Mode: Normal”
and “Mode: Hardcore”. The next eight lines describe the initial state of the game board. Each line has
exactly seven characters. Character ‘.’ describes an empty cell, characters ‘1’–‘7’ describe a disc with
corresponding digit without any protection layers, characters ‘a’–‘g’ describe a disc with one protection
layer, and characters ‘A’–‘G’ describe a disc with two protection layers. It is guaranteed that on the initial
game board, there are no discs in the highest row, no discs that could fall and no discs that could detonate.

Eugene used a very compact notation to write all remaining information, so there is only one line of it,
written on the last line of the input. Let us call it the game log. The game log can contain from 1 to
10 000 characters from the set “1234567abcdefgABCDEFG”. When Eugene made his move, he wrote two
characters to the game log: the first character described the disc, the second one was the number of the
column (columns are enumerated from left to right) where this disc was thrown. For example, “b7” means
that Eugene has thrown the disc with digit 2 with one protection layer to the seventh column if we count
from the left. When Eugene reached the next level, he wrote seven characters to the log describing the
new discs appeared in the bottom row (the first character describes the disc in the leftmost column, the
last one describes the disc in the seventh column counting from the left).

Output
Eugene could make mistakes while writing the log. If the log cannot be interpreted as a correct
sequence of moves, you need to output an error message. You need to output the message
“Game log is not complete” if the log is a correct prefix of the game record, or the message
“Error in game log at position X” if the prefix of length X − 1 is a correct prefix of the game
record, but the prefix of length X is not.

If the log is correct, you need to output the final state of the game. If Eugene lost the game, you need to
output the line “Game is over!” first. Then output the score Eugene got, the maximal length of explosion
chain during the game and the level reached. Then output the final state of the game board. Adhere to
sample output shown below as close as possible.

Examples
drop7.in drop7.out

Mode: Normal

.......

.......

.......

.......

.......

.......

.......

3A..g..

3314e2e2e2e2e2e2e2e2

Game is over!

Score: 60

Longest chain: 2

Level reached: 1

.e.....

.e.....

.e.....

.e.....

.e.....

.e.....

.e.....

.e..7..

Problem B (Div. 1) Developer: Eugene Kurpilyansky Page 3 of 16

ACM International Collegiate Programming Contest 2015/16
XLII St. Petersburg State University Championship, Saturday, October 10, 2015

drop7.in drop7.out

Mode: Normal

.......

.......

.......

.......

.......

.......

.......

.......

A1A1A1A1A1A1A1A1A1

Error in game log at position 17

Mode: Hardcore

.......

.......

.......

.......

.......

.......

.......

.......

A1B

Game log is not complete

Mode: Hardcore

.......

.......

.......

.......

.......

.......

.......

.......

A1B2C3D4E5

Game log is not complete

Mode: Hardcore

.......

.......

.......

.......

.......

.......

.......

.......

71g167f2b3BBbbbbbc436b232A5Abcdefg55

Score: 64418

Longest chain: 14

Level reached: 3

.......

.......

.......

.......

.......

.......

.......

....5..

Explanations
In the second example, Eugene loses after eight moves corresponding to the first 16 characters of the game
log. When the game ended, there could not be any other events, so the log should have been terminated
after 16-th character.

In the third example, the log ends inside a description of a move.

In the fourth example, Eugene reaches the second level after the first five moves, but there is no information
about the discs appeared in the bottom row in the game log.

In the fifth example, the first five moves (“71”, “g1”, “67”, “f2”, “b3”) did not lead to any explosions. After

Problem B (Div. 1) Developer: Eugene Kurpilyansky Page 4 of 16

ACM International Collegiate Programming Contest 2015/16
XLII St. Petersburg State University Championship, Saturday, October 10, 2015

fifth move, Eugene reached the second level, and the bottom row was filled with new discs (“BBbbbbb”).
The next four moves (“c4”, “36”, “b2”, “32”) still did not lead to any explosions. On the tenth move (“A5”),
Eugene started the chain of 14 explosions by throwing disc with digit 1 into the fifth column counting
from the left. Between 6-th and 7-th explosion, Eugene reached the third level (and new discs appeared:
“Abcdefg”). The sample pictures showing the first 8 explosions and reaching the third level are shown
below.

Score: 17000
Level: 2

Chain#1 +7

3

7 2

7 6 2 3 1 3 6

2 2 2 2 2 2 2

Score: 17007
Level: 2

Chain#2 +39

3

2

7 6 2 3 1 3 6

2 2 2 2 2 2 2

Score: 17046
Level: 2

Chain#3 +2x109

3

2

6 2 3 1 3 6

2 2 2 2 2 2 2

Score: 17264
Level: 2

Chain#4 +2x224

3

2 2 3 1 3

2 2 2 2 2 2 2

Score: 17712
Level: 2

Chain#5 +3x391

2 3 1 3

2 2 2 2 2 2 2

Score: 18885
Level: 2

Chain#6 +617

1

2 2 2 2 2 2 2

Score: 36502
Level: 3

Level up! +17000

2 2 2 2 2 2 2

1 2 3 4 5 6 7

Score: 36502
Level: 3

Chain#7 +7x909

2 2 2 2 2 2 2

1 2 3 4 5 6 7

Score: 42865
Level: 3

Chain#8 +1274

1 2 3 4 5 6 7

Problem B (Div. 1) Developer: Eugene Kurpilyansky Page 5 of 16

ACM International Collegiate Programming Contest 2015/16
XLII St. Petersburg State University Championship, Saturday, October 10, 2015

Problem C. Eulerian Graphs
Input file: euler.in

Output file: euler.out

Time limit: 1 second
Memory limit: 256 mebibytes

The night before the competition Alice had read the book about graphs and found some interesting
definitions in it.

A graph G is a pair of sets: vertices and edges (V,E) where the set of edges E is a subset of the set of
unordered pairs of vertices. A cycle in graph (V,E) is a non-empty sequence of edges (u1, v1), . . . , (um, vm)
such that vi = ui+1 for all i < m and vm = u1.

An Eulerian cycle is a cycle in a graph which contains each edge exactly once. A graph is Eulerian if it
contains an Eulerian cycle.

Two graphs G1 = (V1, E1) and G2 = (V2, E2) are called isomorphic if there is a bijective function
f : V1 → V2 such that for all v and u from V1, (v, u) ∈ E1 if and only if (f(u), f(v)) ∈ E2.

Having understood this definitions, Alice asked a natural question: “How many non-isomorphic Eulerian
graphs with n vertices exist?”.

Could you help Alice?

Input
The first line of input contains an integer T : the number of test cases (1 ≤ T ≤ 60). Each of the following
T lines contains an integer n (1 ≤ n ≤ 60).

Output
For each test case, print the number of non-isomorphic graphs on n vertices taken modulo 109 + 7.

Example
euler.in euler.out

2

3

4

5

11

Problem C (Div. 1) Developer: Nikolai Karpov Page 6 of 16

ACM International Collegiate Programming Contest 2015/16
XLII St. Petersburg State University Championship, Saturday, October 10, 2015

Problem D. At Least Half
Input file: halfgcd.in

Output file: halfgcd.out

Time limit: 1.5 seconds
Memory limit: 256 mebibytes

As you will no doubt be aware, the plans for development
of the outlying regions of the Galaxy require the building of
a hyperspatial express route through your star system, and
regrettably your planet is one of those scheduled for
demolition. The process will take slightly less that two of
your Earth minutes. Thank you.

—Prostetnic Vogon Jeltz of the Galactic Hyperspace
Planning Council

As all the vogons do, Prostetnic Jeltz loves numbers and loves to destroy planets. Today is his lucky day:
he is assigned to eliminate some planets for building a hyperspace tunnel instead of them. This is a black
day for all living creatures of Squornshellous system not only because of their possible destruction, but
also because all planets form a line, creating a solar eclipse on each planet.

But there is still hope for some inhabitants of Squornshellous system. Vogons have special rules about
planet destruction. First of all, for the consistency of galactic harmony, they can destroy only a consecutive
segment of planets when they are all on one line. Also vogons know that i-th planet has radius ri. Secondly,
because the Big Laser has very complex stucture, it will start only if there exists a set containing at least
half of the doomed planets such that the greatest common divisor of all their radii is greater than one.

Can you help Prostetnic Jeltz to destroy as many planets as possible in such strict conditions?

Input
The first line contains one integer N : the number of planets in Squornshellous system (1 ≤ N ≤ 500 000).
The next line contains the radii of the planets r1, . . . , rN in the order in which they appear on the line
(1 ≤ ri ≤ 1 000 000).

Output
Output two integers L and R: the indices of the first and the last planet which will be destroyed by
vogons. If there is more than one correct answer, you can output any of them. If you can not destroy
anything, output two zeroes instead.

Example
halfgcd.in halfgcd.out

5

1 2 1 2 1

2 5

Problem D (Div. 1) Developer: Roman Andreev Page 7 of 16

ACM International Collegiate Programming Contest 2015/16
XLII St. Petersburg State University Championship, Saturday, October 10, 2015

Problem E. Next Partition in RLE Notation
Input file: next-partition-rle.in

Output file: next-partition-rle.out

Time limit: 1 second
Memory limit: 256 mebibytes

Consider all ways of partitioning a positive integer N into K positive integers. A partition will be written
as a sequence of numbers in the order from larger to smaller terms. Let us sort partitions in reverse
lexicographical order. Find the next partition of N into K integers in this order, or report that it does
not exist.

The task is complicated by using RLE notation for partitions (RLE stands for Run Length Encoding).
Consider decomposition of a partition into pieces of maximum length such that each piece consists of
equal numbers. In RLE notation, i-th piece is replaced by a pair of numbers Qi and Ai: the number of
elements in the piece and the number by which it is formed.

For example, here is one of the partitions of number 12 into 6 terms: 12 = 4 + 2 + 2 + 2 + 1 + 1. In RLE
notation, this partition is replaced by the sequence of pairs (1, 4), (3, 2), (2, 1).

Note that partitions are ordered by their normal (not RLE) notation.

Input
The first line of input contains one integer L: the number of pairs in RLE notation of partition of some
integer N into K parts (1 ≤ L ≤ 105, 1 ≤ N ≤ 1018, K ≤ N). Each of the next L lines contains two
integers Qi and Ai: the count of numbers Ai in RLE notation and the number Ai itself (1 ≤ Qi, Ai ≤ N).

Output
If the next partition does not exist, print −1. Otherwise, print an integer M on the first line of output:
the number of pairs in RLE notation of the next partition in reverse lexicographical order. On each of
the following M lines, print two numbers Ri and Bi: the count of numbers Bi in RLE notation and the
number Bi itself.

Examples
next-partition-rle.in next-partition-rle.out

3

1 4

3 2

2 1

2

3 3

3 1

1

3 2

-1

Explanations
In the first example, N = 12 and K = 6. The first partition in reverse lexicographical order is
12 = 7 + 1 + 1 + 1 + 1 + 1, the second is 12 = 6 + 2 + 1 + 1 + 1 + 1, the 7-th is the given partition
12 = 4 + 2 + 2 + 2 + 1 + 1, the next one is 12 = 3 + 3 + 3 + 1 + 1 + 1 and the last 11-th partition is
12 = 2 + 2 + 2 + 2 + 2 + 2.

Problem E (Div. 1) Developer: Olga Bursian Page 8 of 16

ACM International Collegiate Programming Contest 2015/16
XLII St. Petersburg State University Championship, Saturday, October 10, 2015

Problem F. Equation
Input file: polynoms.in

Output file: polynoms.out

Time limit: 1 second (1.5 seconds for Java)
Memory limit: 256 mebybytes

A polynomial P (x) over the field F2 is an expression of the form
n∑

i=0
ci · xi where each of the numbers ci

is either 0 or 1, and cn = 1. The number n = deg(P) is the degree of the polynomial. All coefficients ci
for i > n are considered to be zeroes.

The product of polynomials P (x) =
n∑

i=0
pi · xi and Q(x) =

m∑
j=0

qj · xj is the polynomial

S(x) =

n∑
i=0

m∑
j=0

pi · qj · xi+j .

Remember that in F2, the results of each addition and multiplication of the coefficients are immediately
taken modulo 2.

The statement P = 0 is true if all coefficients of the polynomial P (x) are zeroes.

You are given two polynomials P and Q over F2. Your task is to find two polynomials A and B such that
the statement AP +BQ ̸= 0 is true and the degree of AP +BQ is minimal possible.

Input
The first line of input contains an integer T , the number of test cases (1 ≤ T ≤ 100). Each of the next
T pairs of lines contains one test case. A test case consists of two polynomials. A polynomial is given as
n c0 c1 c2 . . . cn. All ci are equal to 0 or 1, and cn = 1.

All given polynomials have positive degrees. The sum of all polynomial degrees in the input does not
exceed 105.

Output
For each test case, print two polynomials: first A, then B. The polynomials must be formatted as in the
input. If there are several answers, print any one of them. The degrees of printed polynomials must be at
most max(10, 2(deg(P) + deg(Q))). It is guaranteed that for any P and Q, there is an answer with the
minimal degree of AP +BQ satisfying the above constraint.

Example
polynoms.in polynoms.out

3

2 1 1 1

1 1 1

4 1 0 0 0 1

2 1 0 1

4 1 0 1 0 1

3 1 1 0 1

0 1

1 0 1

0 0

0 1

2 0 1 1

3 1 0 1 1

Problem F (Div. 1) Developer: Pavel Kunyavskiy Page 9 of 16

ACM International Collegiate Programming Contest 2015/16
XLII St. Petersburg State University Championship, Saturday, October 10, 2015

Problem G. “Swap-Plus” Puzzle
Input file: puzzle-swap-plus.in

Output file: puzzle-swap-plus.out

Time limit: 1 second
Memory limit: 256 mebibytes

The “Swap-Plus” puzzle looks like a table of 4× 4 cells which contain numbers from 1 to 16, each of them
exactly once. Each number contains exactly two decimal digits: the numbers 1–9 have leading zeroes.

In one operation with the puzzle, one can:
• take any two cells of the table and swap them,
• take any two rows of the table and swap them,
• take any two columns of the table and swap them.

Find an arbitrary shortest sequence of operations which transforms a given puzzle into the ordered table:

01 02 03 04

05 06 07 08

09 10 11 12

13 14 15 16

Input
The input consists of four lines corresponding to the rows of the table. Each line contains four numbers,
and each of these numbers consists of exactly two digits. For that, the numbers 1–9 are given with leading
zeroes. Consecutive numbers are separated by a space. It is guaranteed that each of the numberf from 1
to 16 occurs exactly once in the given table.

Output
On the first line, print one integer k: the number of operations. This number must be the minimal possible.
On the next k lines, print the operations themselves.

To record the operations, we denote rows by letters a, b, c, d from top to bottom and columns by numbers
1, 2, 3, 4 from left to right. Each operation which swaps two objects (cells, rows, or columns) is recorded
as the coordinates of one of the objects, the character «-» (minus, ASCII code 45) and the coordinates
of the other object. In the coordinates of a cell, row is followed by column. So:

• swapping two cells is recorded as r1c1-r2c2,
• swapping two rows is recorded as r1-r2,
• swapping two columns is recorded as c1-c2.

If there are several possible answers, print any one of them.

Example
puzzle-swap-plus.in puzzle-swap-plus.out

09 11 05 12

10 07 06 08

01 03 02 04

13 16 14 15

4

a-c

c3-b1

2-3

d3-d4

Explanation
The sequence of operations in the example and the intermediate states of the table are shown below.

09 11 05 12

10 07 06 08

01 03 02 04

13 16 14 15

a-c−−→
01 03 02 04

10 07 06 08

09 11 05 12

13 16 14 15

c3-b1−−−→
01 03 02 04

05 07 06 08

09 11 10 12

13 16 14 15

2-3−−→
01 02 03 04

05 06 07 08

09 10 11 12

13 14 16 15

d3-d4−−−→
01 02 03 04

05 06 07 08

09 10 11 12

13 14 15 16

Problem G (Div. 1) Developer: Ivan Kazmenko Page 10 of 16

ACM International Collegiate Programming Contest 2015/16
XLII St. Petersburg State University Championship, Saturday, October 10, 2015

Problem H. Wrong Sieve
Input file: sieve.in

Output file: sieve.out

Time limit: 2.5 seconds
Memory limit: 256 mebibytes

Many of you heard about Eratosthenes sieve. It is an algorithm which can find all prime numbers between
1 and N . The algorithm works in the following way.

Let us print all the numbers from 1 to N . On the first step, remove all numbers divisible by 2 except 2.
On the second step, remove all numbers divisible by 3 except 3. On the k-th step, remove all numbers
divisible by k + 1 except k + 1 (some of the numbers may have been removed earlier). It is not hard to
show that after N steps, only prime numbers and 1 will still not be removed.

Let us consider one modification of this algorithm. On k-th step, remove every (k+1)-th number from the
list of numbers which are not yet removed. So, on the first step, all even numbers will be removed. The
numbers removed on the second step are 5, 11, 17, After infinitely many steps, the remaining sequence
will start as 1, 3, 7, 13, 19, 27, 39, 49,

Your task is to check if the given number N is in the sequence, and if it is, find its position in the sequence,
starting from 1.

Input
The first line of input contains an integer T : the number of test cases (1 ≤ T ≤ 50). The next T lines
contain integers N1, N2, . . ., NT for which you have to to solve the problem (1 ≤ Ni ≤ 1012).

Output
For each test case, print one number — position of Ni in the sequence or −1 if it is not in the sequence.

Example
sieve.in sieve.out

5

1

2

3

42

1359

1

-1

2

-1

42

Problem H (Div. 1) Developer: Pavel Kunyavskiy Page 11 of 16

ACM International Collegiate Programming Contest 2015/16
XLII St. Petersburg State University Championship, Saturday, October 10, 2015

Problem I. Space Cat
Input file: space-cat.in

Output file: space-cat.out

Time limit: 1 second
Memory limit: 256 mebibytes

Cats are perfect space explorers because of their exceptional ability of landing on the feet. They are not
afraid of changing gravity at all.

So, here is our famous solar Cat. He has a very important mission. The mission itself is to go through a
space hypertunnel and bring The Transcendence to the people.

The space hypertunnel consists of two dimensions and has floor and ceiling. Both floor and ceiling consist
of unit segments of different elevation. The Cat starts at the very first floor segment and must finish at
the very last floor segment.

On any segment, the Cat may change the gravity and jump from the ceiling to the floor, or vice versa.
This action needs as much energy as is the difference between ceiling and floor elevations on that segment.

Additionally, the Cat can move himself onto neighbouring segment, but only if it is possible to pass
without climbing. Climbing could be dangerous in the tunnel! And, of course, our fluffy superhero cannot
pass through walls.

You have to find the minimum amount of energy which is necessary to pass the hypertunnel.

Input
The first line contains the only integer n: the length of the hypertunnel (1 ≤ n ≤ 105). The second line
consists of n space-separated integers: the ceiling levels ci (2 ≤ ci ≤ 109). The second line consists of n
space-separated integers: the floor levels fi (1 ≤ fi < ci).

Output
Print the only integer: the minimum amount of energy which is necessary to pass the hypertunnel, or −1
if it is impossible to do.

Examples
space-cat.in space-cat.out

4

3 4 3 2

1 2 1 1

4

2

4 3

1 2

-1

Explanations
In the first example, the Cat must change the gravity, then go forward from segment 1 to segment 2, then
turn the gravity back and go to the exit.

In the second example, there is no way to the exit.

Problem I (Div. 1) Developer: Alex Kouprin Page 12 of 16

ACM International Collegiate Programming Contest 2015/16
XLII St. Petersburg State University Championship, Saturday, October 10, 2015

Problem J. Tic-Tac-Toe Variation
Input file: standard input

Output file: standard output

Time limit: 1 second
Memory limit: 256 mebibytes

This is an interactive problem.

Dima plays a variation of Tic-Tac-Toe game with Petya. A field consisting of 3 × 3 cells is used for the
game. Initially, each cell is empty. The players take turns one after another, the first one to move is Dima.
On each turn, the player has to put his symbol (x for Dima, o for Petya) in any empty cell.

Dima wins if he constructs a straight line of three xs: this may be a horizontal line, a vertical line, or one
of the two diagonals. The rules for the second player however differ from the standard ones: Petya’s goal
is to prevent Dima from constructing a straight line of three xs. Formally, Petya wins if all cells of
the field are already filled, but Dima did not yet win.

Your task is to play as Dima such that you always win. The judges’ program will play as Petya.

Interaction Protocol
In each test, your program has to play from 1 to 100 games with the above rules as Dima. In different
tests, the number of games and Petya’s strategy may be different. Each game consists of several moves.

During a single game, the playing programs send the current state of the playing field to one another. This
state is recorded as three lines each of which contains three characters. Character “x” (lowercase English
letter ex) means that Dima’s symbol is put in the respective cell, Character “o” (lowercase English letter
oh) means Petya’s symbol, and “.” (dot) signifies an empty cell.

When a game starts, the participant’s program is given the initial state of the field: all cells are empty.
To make a move, each playing program must print back the state it just recieved, changed according to
the rules: exactly one of the empty cells must become a cell with the respective player’s symbol.

A game is finished when one of the players wins. If the winner is Petya, evaluation stops with outcome
“Wrong Answer”. If Dima wins, the players start a new game if they have to play more.

In each test, the number of games and Petya’s strategy are chosen in advance. If all planned games ended
with Dima being the winner, instead of another empty board, the participant’s program is given a board
consisting entirely of Dima’s symbols (x). When the participant’s program gets such a board, it must
terminate gracefully.

To prevent output buffering, flush the output buffer after each command you issue: this can be done by
using, for example, fflush (stdout) in C or C++, System.out.flush () in Java, flush (output) in
Pascal or sys.stdout.flush () in Python.

Problem J (Div. 1) Developer: Ivan Kazmenko Page 13 of 16

ACM International Collegiate Programming Contest 2015/16
XLII St. Petersburg State University Championship, Saturday, October 10, 2015

Example
standard input standard output

...

...

...

o..

.x.

...

oxo

.x.

...

...

...

...

o..

.x.

...

oo.

.x.

.x.

ooo

.x.

xx.

xxx

xxx

xxx

...

.x.

...

ox.

.x.

...

oxo

.x.

.x.

...

.x.

...

o..

.x.

.x.

oo.

.x.

xx.

ooo

.x.

xxx

Explanation
In the example, which is also the first test in the testing system, the solution has to play two games.
In each of them, Petya always chooses the uppermost empty cell and puts an o there. In case there are
several such cells, Petya chooses the leftmost of them.

Please note that there are no empty lines in the actual input and output. The gaps are added so that all
lines of input and output are displayed in the order in which they were transmitted.

Problem J (Div. 1) Developer: Ivan Kazmenko Page 14 of 16

ACM International Collegiate Programming Contest 2015/16
XLII St. Petersburg State University Championship, Saturday, October 10, 2015

Problem K. Captain Tarjan
Input file: treepaths.in

Output file: treepaths.out

Time limit: 1 second
Memory limit: 256 mebibytes

— Nooo, here is another unsolvable tree problem...
— Then we need to call captain Tarjan for the rescue!

Hypothetical dialogue during the contest

Not so long ago little Sergey started solving problems on trees. At first he learned about
Aho-Hopcroft-Ullman-Tarjan algorithm that finds LCA in almost O(1) time for offline queries, but this
wasn’t enough for him. “We need to go deeper,” he thought. In one of the next Tarjan’s articles, he found
description of heavy-light decomposition which divides a tree into vertex-disjoint vertical paths. A path
is called vertical if we can go along this path always travelling down (from the root to leaves). After that,
we can calculate whatever we want on these paths.

“But what will happen if we make some another vertex the root of our tree? Then we can accidentally
break verticality of some paths...” Sergey wondered. But Tarjan had an answer for this question too.
Along with Sleator, he discovered Splay trees, which helped in building the link/cut tree data stucture.
One of its key features is that we can modify paths is such a way that any vertex can become the root.
This is exactly what we want! Maybe many years ago Tarjan was also as little as Sergey, and the same
questions were in his head at that time?

But let us return to our problem. Obviously, Sergey started learning so much about trees not only because
of pure curiosity. At his house, there is his favourite big tree with N vertices, and he wants to ask M very
tricky queries of the form “calculate some function on the path in the tree that goes from ui to vi”. How
can we process such a query? Obviously, we need to divide our path into some smaller paths which all
can be represented as subpaths of our vertex-disjoint vertical paths, and get all information we need from
them. There is only one problem: not all edges can be located inside our decomposition, and therefore, we
need to process them differently. All such edges connect two vertices from different paths. Sergey doesn’t
like corner cases, so he wants to minimize the total number of such edges in all of his queries.

Help Sergey to select a root vertex and construct a valid decomposition that minimizes the number of
such corner case edges.

Input
The first line contains two integers N and M (1 ≤ N,M ≤ 105). Next N − 1 lines describe Sergey’s tree:
i-th of them contains two integers xi and yi which are the vertices of i-th edge (1 ≤ xi, yi ≤ N). The next
M lines describe queries to some paths (ui, vi) in the same format.

Output
Output one number: the minimal number of edges outside of decomposition.

Example
treepaths.in treepaths.out

4 3

1 2

2 3

2 4

1 3

1 4

3 4

2

Problem K (Div. 1) Developer: Roman Andreev Page 15 of 16

ACM International Collegiate Programming Contest 2015/16
XLII St. Petersburg State University Championship, Saturday, October 10, 2015

Problem L. Gardening Lesson
Input file: unexpected-leaf.in

Output file: unexpected-leaf.out

Time limit: 2 seconds
Memory limit: 256 mebibytes

Hexadecimal’s new passion is gardening!

She found a tree which completely describes her fine spiritual organization. This tree consists of n vertices
and, as many other ones, is a bidirectional graph with n− 1 edges and with no cycles.

The virus decided to grow a copy of the tree in her garden. And it’s almost happened!

As everyone knows, it is necessary to check that all branches and leaves of the tree have grown successfully
and no other things have grown. Unfortunately, one additional leaf has appeared unexpectedly.

Now you are asked to help in searching for the additional leaf to remove. Can you?

Input
The first line of input contains of the only integer n: the number of vertices in the original tree
(1 ≤ n ≤ 100 000). The following n−1 lines describe the original tree. The i-th of these lines contains two
integers xi and yi: the numbers of vertices connected by an edge (1 ≤ xi, yi ≤ n). The following n lines
describe the new tree which has n+1 vertices in the same format. It is guaranteed that the new tree can
be produced from the original one by adding a leaf and renumbering the vertices.

Output
Print the only integer: the number of the additional leaf. If there are several possible solutions, find the
one with the minimal number.

Examples
unexpected-leaf.in unexpected-leaf.out

5

1 2

2 3

1 4

1 5

1 2

2 3

3 4

4 5

3 6

1

3

1 2

2 3

2 4

4 1

1 3

2

4

1 2

1 3

1 4

1 2

1 3

1 4

4 5

5

Problem L (Div. 1) Developer: Alex Kouprin, Egor Suvorov, Roman Andreev Page 16 of 16

