
ACM International Collegiate Programming Contest 2014/15
XXXIX St. Petersburg State University Championship, Sunday, October 19, 2014

Problem A. Barabashka
Input file: barabashka.in

Output file: barabashka.out

Time limit: 2 seconds
Memory limit: 256 mebibytes

The tests for this problem are open. In this problem, you have to choose one of the five items according to
a textual description of an image.

“Barabashka” (originally named “Geistesblitz”) is a board game that favors fast reaction. Below are the
rules of the game for this problem. Please read them carefully, as they are slightly different from the
original game rules.

The game set includes five items of different colors: a white ghost named Barabashka, a green bottle, a
gray mouse, a blue book and a red chair, and also special cards. Each card contains an image with exactly
two of these five items. Each of the items also has one of the aforementioned five colors, but the color of
each item may be wrong. The colors of these two items are different. The image can contain other objects,
but their colors are guaranteed to be different from the five colors above.

A single move in the game proceeds as follows. All items are put on the table, and after that, a card is
drawn from the deck and shown to the players. If the card contains an item of the right color (the color on
the picture matches the color of the real item on the table), the players have to grab that item. Otherwise,
the players have to grab the item which is not present on the picture, and the true color of which also
does not appear on the picture. The winner is the player who grabs the right item earlier than the others.
The winner gets the card as a reward. It is guaranteed that all cards contain images for which there exists
a unique right answer.

In this problem, each test consists of exactly five sentences. A sentence is a textual description of one
card in English. The right answer for a sentence is the description of the item to grab when the players
see such card.

Each sentence is written in English and can contain English letters, spaces and characters “'”, “,”, “-”
and “.” (ASCII codes 39, 44, 45 and 46). The names and the right colors of the items are the following:
“white Barabashka”, “blue book”, “red chair”, “gray mouse” and “green bottle”.

Let a word be a sequence of English letters surrounded from both ends by line ends or non-letter characters.
Then we can formulate the following restrictions on the sentences:

• A sentence contains exactly two positions of the form “color name” where the word “color” is one
of the five colors mentioned above, and the word “name” is one of the five item names.

• No other word in the sentence is equal to the name or the color of some of the items on the table.

The tests in this problem are open for contestants and can be downloaded at the following addresses:

• http://acm.math.spbu.ru/141019_files/barabashka/tests.zip (Windows line breaks),

• http://acm.math.spbu.ru/141019_files/barabashka/tests.tar.gz (Linux line breaks).

The problem contains 24 tests, that is, 24 · 5 = 120 card descriptions: one description for each possible
combination of items and their colors on a card.

Problem A (Div. 1) Developer: Ivan Kazmenko Page 1 of 13

ACM International Collegiate Programming Contest 2014/15
XXXIX St. Petersburg State University Championship, Sunday, October 19, 2014

Input
The input consists of five lines. Each line contains one sentence of length from 1 to 80 characters. The
exact format of each sentence is given in the problem description. Uppercase and lowercase letters are
considered different.

Output
For each sentence, print a line containing two words separated by a space: the right color and name of the
item to grab when the players see the card described by that sentence. Uppercase and lowercase letters
are considered different.

Example
barabashka.in barabashka.out

A white Barabashka is staring at a gray bottle.

A red mouse is running from a green Barabashka and its shadows.

A gray book lies on a red chair's right arm.

Black smoke is rising from a blue bottle lying under a white chair.

A white mouse is trying to crawl out of a green bottle.

white Barabashka

blue book

red chair

gray mouse

green bottle

Explanation
The first, third and fifth sentences of the example describe items of the right colors. So, their colors and
names must be printed. In the second and fourth sentences, this is not the case, so we must choose such
an item that neither its name nor its color appear as words in the sentence.

Problem A (Div. 1) Developer: Ivan Kazmenko Page 2 of 13

ACM International Collegiate Programming Contest 2014/15
XXXIX St. Petersburg State University Championship, Sunday, October 19, 2014

Problem B. Compare Continued Fractions
Input file: ccf.in

Output file: ccf.out

Time limit: 2 seconds
Memory limit: 256 mebibytes

In this problem, you have to compare two rational numbers represented by their continued fractions.

A finite continued fraction is a sequence [a0; a1, a2, . . . , an]. The following restrictions are applied:

• n is a non-negative finite integer,

• the elements a0, a1, a2, . . ., an are integers,

• ai > 0 for each i > 0,

• an > 1 if n > 0.

These restrictions allow to establish a one-to-one correspondence between rational numbers and
finite continued fractions: every rational number x corresponds to the unique continued fraction
[a0; a1, a2, . . . , an] such that

x = a0 +
1

a1 +
1

a2+
1

...+ 1
an

.

Thus, the following notation is used: x = [a0; a1, a2, . . . , an]. For example,

17

25
= 0 +

1
25
17

= 0 +
1

1 + 8
17

= 0 +
1

1 + 1
17
8

= 0+
1

1+ 1
2+ 1

8

,

so we write 17
25 = [0; 1, 2, 8].

Given the continued fractions for two rational numbers x and y, find whether x < y, x = y, or x > y.

Input
The input consists of two lines. The first line contains the continued fraction for the rational number x.
The second line contains the continued fraction for the rational number y.

Each continued fraction is given as a sequence of integers separated by single spaces. First goes an integer
n, the length of the continued fraction (0 ≤ n ≤ 100 000). It is followed by (n+ 1) integers which are the
elements of the continued fraction: a0, a1, a2, . . ., an (|ai| ≤ 109). It is guaranteed that ai > 0 for each
i > 0 and an > 1 if n > 0.

Output
On the first line of output, print a single character: “<” if x < y, “=” if x = y, or “>” if x > y.

Examples
ccf.in ccf.out Notes

1 0 3

2 0 1 2

< x = 0 + 1
3 = 1

3, y = 0 + 1
1+ 1

2

= 2
3

0 1

0 1

= x = 1, y = 1

1 -1 2

0 -1

> x = −1 + 1
2 = −1

2, y = −1

Problem B (Div. 1) Developer: Ivan Kazmenko Page 3 of 13

ACM International Collegiate Programming Contest 2014/15
XXXIX St. Petersburg State University Championship, Sunday, October 19, 2014

Problem C. Graph Coloring
Input file: coloring.in

Output file: coloring.out

Time limit: 2 seconds
Memory limit: 256 mebibytes

You are given a bidirectional graph where the degree of each vertex is at most 5. Paint its vertices in 3
colors in such a way that each vertex v has no more than one neighbor of the same color as v.

Input
On the first line, there are two integers n and m: the number of vertices and the number of edges
(1 ≤ n ≤ 100 000).

Each of next m lines contains two integers a and b: the numbers of vertices connected by an edge
(1 ≤ a, b ≤ n).

It is guaranteed that there are no loops or multiple edges in the graph, and the degree of each vertex is
at most 5.

Output
It there is no valid coloring, print one number “-1” (without quotes). Otherwise, print n integers c1, c2,
. . ., cn: the colors of all vertices (1 ≤ ci ≤ 3). If there is more than one solution, print any one of them.

Examples
coloring.in coloring.out

3 3

1 2

2 3

1 3

2 1 1

6 15

1 2

1 3

1 4

1 5

1 6

2 3

2 4

2 5

2 6

3 4

3 5

3 6

4 5

4 6

5 6

2 2 3 3 1 1

3 1

1 2

1 1 1

Problem C (Div. 1) Developer: Pavel Kunyavskiy Page 4 of 13

ACM International Collegiate Programming Contest 2014/15
XXXIX St. Petersburg State University Championship, Sunday, October 19, 2014

Problem D. Convolution
Input file: convolution.in

Output file: convolution.out

Time limit: 2 second
Memory limit: 256 mebibytes

Consider all subsets of set U = {0, 1, 2, . . . , n − 1}. Every subset A = {a1, a2, . . . , ak} corresponds to a

unique integer p(A) =
k∑

i=1
2ai . Let function F of an n-element set be defined by an array of integers f of

length 2n: the value F (A) is equal to f [p(A)].

You are given two functions F and G. Your task is to find such function H that

H(A) =
∑

B∪C=A

F (B)G(C).

Input
The first line contains two integers n and t (1 ≤ n ≤ 16, 1 ≤ t ≤ 100). Here, n is the size of the set U ,
and t is number of test cases. The second line contains two integers a and b, each from 1 to 109. These
numbers are used in the following pseudo-random generator:

1. unsigned int cur = 0; // unsigned 32-bit integer

2. unsigned int nextRand16() {

3. cur = cur * a + b; // calculated modulo 232

4. return cur / 216; // integer from 0 to 216 − 1
5. }

The test cases are generated successively. In each of them, first, you must generate the elements of array
f (values of F) in the order of increasing array index, and after that, you must generate the elements of
g (values of G) in the same order. Each element is generated by calling the function nextRand16().

Output

For each test case, print one integer on a separate line:
(∑

A

H(A) · (p(A) + 1)

)
mod 232.

Examples
convolution.in convolution.out

3 2

30 239017

2723387430

3167905008

16 2

239 17

551267264

1632349120

Explanations
The arrays in the first example are the following:
f1 : 3, 113, 3395, 36331, 41370, 61471, 9130, 11774

g1 : 25547, 45526, 55066, 13590, 14501, 41817, 9356, 18543

h1 : 76641, 8167827, 273846333, 5284992017, 1656829263, 11450721456, 3699971823, 14260048942

f2 : 32024, 43238, 51978, 52034, 53714, 38578, 43250, 52338

g2 : 62834, 50034, 59250, 8050, 44914, 36722, 53106, 20338

h2 : 2012196016, 6482475400, 8243104152, 15561662464, 7225902008, 16869349792, 22350138288, 44342816072

Problem D (Div. 1) Developer: Sergey Kopeliovich Page 5 of 13

ACM International Collegiate Programming Contest 2014/15
XXXIX St. Petersburg State University Championship, Sunday, October 19, 2014

Problem E. Octopus’s Garden
Input file: garden.in

Output file: garden.out

Time limit: 5 seconds
Memory limit: 256 mebibytes

Octopuses are located on the surface of the planar seabed in the most beatiful manner. Octopuses like
their location if it specifies a partition of the seabed plane into triangles such that the octopuses’ heads are
in triangle vertices, and triangle edges are formed by their outstretched tentacles. They call such partition
a triangulation. Let us formalize this notion with the help of graph theory.

A planar graph is a graph that can be drawn on a plane in such a way
that no edges cross each other.

A face of a graph drawn without crossings is a simple cycle which
surrounds such a region that there are no edges or vertices inside the
region.

An outer face of a graph drawn without crossings is the region which
has infinite area.

A triangulation of a set of points on the plane is a connected planar
graph drawn in such a way that its vertices are in these points, and
every face except the outer face is a non-degenerate triangle formed
by exactly three edges of the graph.

Two triangles are connected by side if they have a common side.

A triangle and the outer face are connected by side if one of the triangle’s sides touches the outer face.

Let us denote the set of faces of the triangulation by S.

A sequence of elements of S is called a path if every two consecutive members of it are connected by side.

A subset of S is said to be connected by side if for any two elements of this subset, there exists a path
such that all its elements belong to this subset.

We are given a triangulation S.

Consider a subset of S that does not contain the outer face. We will say such a subset is simply connected
if it satisfies the following conditions:

• the subset is connected by side;
• the complement of the subset in S also is connected by side.

Octopuses like simply connected sets because they plan to take contour integrals around their border.

One of the triangles in the triangulation is fixed as the starting triangle.

Help the octopuses to find a sequence of all triangles in the triangulation which starts with the starting
triangle, and for any 1 ≤ i ≤ K where K is the number of triangles, the set of triangles T1, T2, . . ., Ti is
simply connected.

Input
The first line of input contains two integers N (3 ≤ N ≤ 100 000) and M : the number of octopuses and
the number of edges formed by their outstretched tentacles. The second line contains three integers A, B
and C: the numbers of octopuses that occupy the vertices of the starting triangle.

Each of the following N lines contains two integers X and Y : coordinates of points on the seabed plane
where octopuses are located. (−10 000 ≤ X,Y ≤ 10 000). All these points are distinct.

Each of the following M lines contains two integers U and V : the numbers of two octopuses forming an
edge by their outstretched tentacles.

Problem E (Div. 1) Developer: Olga Bursian Page 6 of 13

ACM International Collegiate Programming Contest 2014/15
XXXIX St. Petersburg State University Championship, Sunday, October 19, 2014

Octopuses are numbered from one in the order they are described. An octopus may have any number of
tentacles, not only eight as in nature.

It is known that the subset of S consisting of all its elements except the outer face is connected by side.
The union of all elements of this subset forms a convex polygon.

Output
On the first line of output, print an integer K: the number of triangles formed by octopuses. On each of
following (K − 1) lines, print tree integers P

(1)
i , P (2)

i , P (3)
i : the numbers of three octopuses which form

triangle Ti (2 ≤ i ≤ K). For every i such that 1 ≤ i ≤ K, the set of triangles T1, T2, . . ., Ti must be
simply connected. If there is more than one possible solution, output any one of them.

Examples
garden.in garden.out

6 9

1 2 3

2 0

1 1

3 1

0 2

2 2

4 2

1 2

1 3

2 3

2 4

2 5

3 5

3 6

4 5

5 6

4

2 3 5

2 4 5

3 5 6

3 3

1 2 3

1 1

1 2

2 1

1 2

2 3

3 1

1

Explanations
In the first example:

the triangle sequence such that the first triangle is formed by octopuses 1, 2, 3 and
the second one by 2, 4, 5 is incorrect because one of conditions is not satisfied: this
triangles are not connected by side;

the triangle sequence such that the first triangle is formed by octopuses 1, 2, 3 and
the second one by 2, 3, 5 is correct;

the triangle sequence such that the first triangle is formed by octopuses 1, 2, 3,
the second one by 3, 5, 6 and the third one by 2, 4, 5 is incorrect because both
conditions are not satisfied: the set formed by this sequence is not connected by
side, and the complement set is also not connected by side.

The second example contains only one triangle, so output only one integer K.

Problem E (Div. 1) Developer: Olga Bursian Page 7 of 13

ACM International Collegiate Programming Contest 2014/15
XXXIX St. Petersburg State University Championship, Sunday, October 19, 2014

Problem F. Pentagon
Input file: pentagon.in

Output file: pentagon.out

Time limit: 2 seconds
Memory limit: 256 mebibytes

You are given a pentagon. Your task is to find the number of its triangulations.

A triangulation of polygon P is a collection of triangles such that the internal areas of these triangles have
no common points, and their union is equal to P . Each vertex of each triangle must coincide with some
of the polygon’s vertices. Additionally, each side of each traingle must either fully coincide with some of
the polygon’s sides or have exactly two common points (endpoints) with the border of the polygon.

Input
The first line of input contains one integer n, the number of test cases (1 ≤ n ≤ 10 000). Then, the test
cases follow. There is a single empty line before each test case.

Each test case describes one pentagon and consists of five lines. Each of these lines contains two integers x
and y separated by a single space: coordinates of the next vertex of the pentagon in either clockwise
or counter-clockwise direction (−100 ≤ x, y ≤ 100). It is guaranteed that every pentagon has no
self-intersections and no self-touchings. Additionally, no two adjacent sides of the polygon lie on the
same line.

Output
Print n lines, one line for each test case. Each of these lines must contain one integer: the number of
different triangulations of the corresponding pentagon.

Example
pentagon.in pentagon.out

2

-5 0

0 3

5 0

2 -2

-2 -2

-5 -5

-5 5

5 5

5 -5

0 0

5

1

Explanation

This image shows all possible triangulations of the first pentagon in the example.

Problem F (Div. 1) Developer: Alexander Granovsky Page 8 of 13

ACM International Collegiate Programming Contest 2014/15
XXXIX St. Petersburg State University Championship, Sunday, October 19, 2014

Problem G. Squares Game
Input file: standard input

Output file: standard output

Time limit: 2 seconds
Memory limit: 256 mebibytes

This is an interactive problem. In this problem, you have to win against an opponent who makes random
moves.

Felix and Sophia play a game on a rectangular board consisting of m×n square cells. They move in turns.
Each cell of the board is either free or painted. Initially all cells are free. A move consists in selecting any
four free cells which form a 2 × 2 square and painting these cells. The player who can not make a move
loses the game.

On each of his turns, Felix chooses one of the possible 2 × 2 squares uniformly at random and paints it.
Your task is to play as Sophia. Your solution will be considered correct if it loses no more than 10 games
out of 300.

In this problem, each test specifies the size of the board. In each test, you have to play exactly 300 games.
In each game, Felix moves first and Sophia moves second.

Input
The first line contains two integers m and n separated by a space: the size of the board (16 ≤ m,n ≤ 25).
Note the lower limit: the board can not be too small. The rows of the board are numbered from 1 to m,
and the columns from 1 to n.

The following input is divided into blocks, and each block corresponds to one game. Each block starts
with a line “start k” where k is the number of the game starting from 1. Each of the following lines has
the form “move r c” (1 ≤ r < m, 1 ≤ c < n). Such a line means that on his turn, Felix painted four cells
with coordinates (r, c), (r, c+ 1), (r+ 1, c) and (r+ 1, c+ 1). If a game finishes because Sophia wins, the
line given instead of the next Felix’s turn is “won”, and after that, the block terminates. If a game finishes
because Felix wins, the next line after the Felix’s turn is “lost”, and after that, the block also terminates.
The blocks follow one after another without any additional separators. After the last block, there is a
single line “end”.

It is guaranteed that Felix makes all moves according to the rules of the game, and each move is chosen
pseudo-randomly and uniformly. It is worth noting that, before the first game, the pseudo-random number
generator is always initialized by the same value. This means that, if your solution is playing as Sophia
deterministically, on each test, all moves and the results of all games will remain the same if the solution
is run repetitively.

Output
Each time when it is Sophia’s turn in a game and there is at least one possible move, print a line of the
form “move r c” (1 ≤ r < m, 1 ≤ c < n). Such a line will mean that the move you selected for Sophia is
to paint four cells with coordinates (r, c), (r, c+ 1), (r + 1, c) and (r + 1, c+ 1).

To prevent output buffering, after printing each line, consider issuing the command which flushes the
buffer. For example, this command may be fflush (stdout) in C or C++, System.out.flush () in
Java, flush (output) in Pascal or sys.stdout.flush () in Python.

If your solution makes an invalid move or loses more than 10 games, it gets the «Wrong Answer» outcome
on the respective test.

Problem G (Div. 1) Developer: Ivan Kazmenko Page 9 of 13

ACM International Collegiate Programming Contest 2014/15
XXXIX St. Petersburg State University Championship, Sunday, October 19, 2014

Example
standard input standard output

2 5

start 1

move 1 4

<waiting for output>

won

start 2

move 1 2

<waiting for output>

won

end

<reading input>

<reading input>

<reading input>

move 1 1

<reading input>

<reading input>

<reading input>

move 1 4

<reading input>

<terminating>

Explanation
When your solution is checked, the first test is the example from the statement. Note that the constraint
m,n ≥ 16 is not satisfied for this test, but still, it is satisfied for all tests starting from the second one.
Furthermore, in the example test, there are only two games instead of 300 games as in all other tests.
The choice of moves by Felix does not depend on Sophia’s moves and is determined in advance. Finally,
on a 2× 5 board, the second player wins regardless of how the game goes.

Your program passes the example test if it wins both games and successfully terminates after that. Recall
that your program passes a regular test if it loses no more than 10 games and successfully terminates
after that.

Problem G (Div. 1) Developer: Ivan Kazmenko Page 10 of 13

ACM International Collegiate Programming Contest 2014/15
XXXIX St. Petersburg State University Championship, Sunday, October 19, 2014

Problem H. Removing Vertices
Input file: removing.in

Output file: removing.out

Time limit: 2 seconds
Memory limit: 256 mebybytes

You are given an bidirectional graph with (n+1) vertices numbered from 0 to n. There are no loops and
no multiple edges in this graph. Additionally, all cycles pass through vertex 0. Your task is to remove the
minimum possible number of vertices so that there are no cycles in the graph. You can not remove the
vertex number 0.

Input
On the first line, there are two integers n and m: the number of vertices excluding vertex 0 and the number
of edges (1 ≤ n ≤ 105, 1 ≤ m ≤ 106).

Each of next m lines contains two integers a and b: the numbers of vertices connected by an edge
(0 ≤ a, b ≤ n).

It is guaranteered that all cycles pass through vertex 0.

Output
On the first line, print one integer k: the minimum possible number of vertices to remove. On the second
line, print k integers: the numbers of the vertices to remove in any order. If there are several optimal
answers, print any one of them.

Examples
removing.in removing.out

4 6

0 1

1 2

2 0

0 3

3 4

4 0

2

1 3

3 5

0 1

1 2

2 0

2 3

3 0

1

2

Problem H (Div. 1) Developer: Pavel Kunyavskiy Page 11 of 13

ACM International Collegiate Programming Contest 2014/15
XXXIX St. Petersburg State University Championship, Sunday, October 19, 2014

Problem I. Two Paths
Input file: two-paths.in

Output file: two-paths.out

Time limit: 2 seconds
Memory limit: 256 mebibytes

You are given a directed acyclic graph with two fixed pairs of vertices: (A,B) and (C,D). Consider all
pairs of edge-disjoint simple paths — one from A to B, another from C to D. Your task is to find pair
with minimal total length.

Input
The first line of input contains two integers n and m: the number of vertices and edges in graph, respectively
(1 ≤ n ≤ 5000, 0 ≤ m ≤ 20 000).

Each of the next m lines contains two integers u and v which mean that there is an edge from u to v.
(1 ≤ u, v ≤ n).

It is guaranteed that the given graph contains no loops, no multiple edges and no cycles.

The last line of the input contains the numbers of the fixed vertices in the order A, B, C, D
(1 ≤ A,B,C,D ≤ n).

Output
If no pair of paths exists, print a single line with a single word “NO” on it. Otherwise, print “YES” on the
first line. After that, print the descriptions of the paths: first the path from A to B, then the path from
C to D.

The description of each path must consist of two lines. On the first of these lines, print the number of
vertices in the path. The following line must contain the numbers of vertices in the path in the order in
which they are visited. The paths must be simple (each vertex of the graph must be visited no more than
once by each path). If there are several possible solutions, print any one of them.

Examples
two-paths.in two-paths.out

4 3

1 2

2 3

3 4

1 2 3 4

YES

2

1 2

2

3 4

4 3

1 2

2 3

3 4

1 3 2 4

NO

Problem I (Div. 1) Developer: Dmitry Egorov Page 12 of 13

ACM International Collegiate Programming Contest 2014/15
XXXIX St. Petersburg State University Championship, Sunday, October 19, 2014

Problem J. Two Rectangles
Input file: two-rectangles.in

Output file: two-rectangles.out

Time limit: 2 seconds
Memory limit: 256 mebibytes

In this problem, you have to find two rectangles with the given total area which have the minimum possible
total perimeter.

Recall that the area of a rectangle having sides of length m and n is m ·n, and its perimeter is 2 · (m+n).

Given an integer s ≥ 2, consider two rectangles with positive integer lengths of sides such that the sum
of their areas is s. What is the minimum possible sum of their perimeters?

Formally, choose four positive side lengths a, b, c and d so that the total area a · b+ c · d equals s and the
total perimeter 2 · (a+ b) + 2 · (c+ d) is minimum possible.

Input
The first line of input contains one integer s (2 ≤ s ≤ 1018).

Output
On the first line, print one number: the minimum possible total perimeter. On the second line, print a
and b, the side lengths of the first rectangle, separated by a space. On the third line, print c and d, the
side lengths of the second rectangle, also separated by a space. If there is more than one possible answer,
print any one of them.

Examples
two-rectangles.in two-rectangles.out

5 12

1 1

2 2

8 16

3 2

1 2

Explanations
In the first example, the only optimal answer is to choose squares of sizes 1 × 1 and 2 × 2. They can be
printed in any order.

In the second example, there is another optimal answer: instead of rectangles 1 × 2 and 2 × 3, we can
choose two squares of size 2× 2 each.

Problem J (Div. 1) Developer: Ivan Kazmenko Page 13 of 13

