
ACM International Collegiate Programming Contest 2013/14
XXXVII St. Petersburg State University Championship, Sunday, December 15, 2013

Problem A. Bag Repacking
Input �le: bag-repacking.in

Output �le: bag-repacking.out

Time limit: 2 seconds (3 seconds for Java)
Memory limit: 256 mebibytes

In this problem, you have to repack a collection of bags.

There are n bags to consider. All bags are di�erent: each one is painted in its own unique color.
Each bag is capacious but takes little space by itself. In practice it means that for each bag, it is
possible to put all other bags in it.

A bag can be contained in another one, either immediately or inside some other bags which
are also inside. Let us try to establish formal de�nitions for these concepts. We say that bag u
is immediately contained in bag v if, after opening bag v, we can take bag u outside of bag v
without opening any other bag. We say that bag u is located somewhere inside bag v if either
u is immediately contained in v or u is immediately contained in some bag w which is located
somewhere inside bag v. Each bag can be immediately contained in at most one bag. If a bag is
not immediately contained in any other bag, we say that this bag is located outside. No bag can
be located somewhere inside itself.

Let a con�guration of bags be the information for every bag whether it is immediately contained
in some other bag, and if it is, in which one. There are two operations on a con�guration of bags.

• �out u v�: Take bag u which is immediately contained in bag v out of bag v which is located
outside.

• �in u v�: Put bag u which is located outside into bag v which is also located outside.

It is easy to see that these two operations are mutually inverse, and also that each possible
con�guration of bags can be transformed into any other by some sequence of such operations.
Naturally, con�guration of bags must remain proper after every operation, that is, no bag can be
located somewhere inside itself.

Transform the initial con�guration of bags into the requested con�guration by a sequence of
operations de�ned above. You do not have to minimize the number of operations, but it can be
no greater than 100 000.

Input

The �rst line of input contains an integer n, the number of bags (1 ≤ n ≤ 100). The second line
describes the initial con�guration of bags, and the third line contains the requested con�guration.
The description of each con�guration consists of n integers: the number of bag in which the �rst,
the second, . . . , the n-th bag is contained. The bags are numbered by integers from 1 to n. If a bag
is located outside, the respective number is zero. It is guaranteed that both given con�gurations
are proper.

Output

The �rst line must contain an integer k, the total number of operations. The next k lines must
describe the operations themselves in the order of execution. Adhere to the format described in
the statement. If there are mupliple possible answers, �nd any one of them.

Problem A Developer: Ivan Kazmenko Page 1 of 11



ACM International Collegiate Programming Contest 2013/14
XXXVII St. Petersburg State University Championship, Sunday, December 15, 2013

Examples

bag-repacking.in bag-repacking.out

5

0 1 0 3 1

2 3 0 3 3

5

out 5 1

in 5 2

out 2 1

in 1 2

in 2 3

2

2 0

2 0

0

Explanations

In the �rst example, in the initial con�guration, the second and the �fth bags are immediately
contained in the �rst one, and the fourth bag is immediately contained in the third one. Let us
�rst take bag 5 out of bag 1 and put it into bag 3. After that, take bag 2 out of bag 1, put bag 1
into bag 2, and �nally, put bag 2 into bag 3. As a result, the �rst bag is immediately contained in
the second one, and the second, the fourth and the �fth in the third one. So, after �ve described
operations, we got the requested con�guration of bags.

In the second example, the initial con�guration coincides with the requested one: the �rst bag is
immediately contained in the second one. There are no operations to execute. Since we do not
have to minimize the number of operations, we can, for example, take bag 1 out of bag 2 and then
put it back.

Problem A Developer: Ivan Kazmenko Page 2 of 11



ACM International Collegiate Programming Contest 2013/14
XXXVII St. Petersburg State University Championship, Sunday, December 15, 2013

Problem B. Bit Permutation
Input �le: bit-permutation.in

Output �le: bit-permutation.out

Time limit: 2 seconds (3 seconds for Java)
Memory limit: 256 mebibytes

In this problem, you have to �nd a fast way to rearrange the bits in a machine integer.

Do you know how numbers are represented in modern hardware? A convenient way to store an
integer number which is not too large by the absolute value is to represent it in the int32 data
type. This data type grants 32 bits to store each integer. The bits are numbered from 0 to 31. Each
bit can be either zero or one. If the values of the bits are b0, b1, b2, . . ., b30, b31, the represented
number is the sum

b0 · 20 + b1 · 21 + b2 · 22 + . . . + b30 · 230 − b31 · 231.

Please note that the last summand has negative sign. This type can represent any integer number
from −231 to 231 − 1.

One can rearrange the bits of a number represented in int32 data type. Consider a permutation
p0, p1, p2, . . ., p30, p31 consisting of integers from 0 to 31 each of which occurs in the permutation
exactly once. After rearranging the bits x0, . . ., x31 of a number x according to p, one gets y = p(x)
consisting of bits y0 = xp0 , . . ., y31 = xp31 .

Do you know where �random� numbers come from? A simple way to get pseudorandom numbers is
to use a linear congruential generator. Such a generator is characterized by constants a (multiplier),
c (increment) and m (modulus) along with the state s. To generate the next pseudorandom number,
we �rst perform the operation s← (s·a+c) mod m. After that, the new value of state s is declared
to be the next pseudorandom number. Surely, such generator has a period no greater than m: as
soon as s becomes a number which already occurred earlier, all subsequent calculations will have
the same results as before.

To speed up such a generator, one can get rid of the modulo m operation. Let use represent the
number obtained by s← (s ·a+c) in int32 data type. Some part of the number may be lost in the
process, but the remaining part has the same remainder modulo 232 as the true result. Actually,
the result is the same as using modulus m = 232 and subtracting 232 from the top half of the
possible remainders.

You are given numbers n, a, c and s, as well as the bit permutation p. Using a linear congruential
generator utilizing int32 data type with parameters a and c and initial state s, generate the next
n pseudorandom numbers x1, x2, . . ., xn. Apply the permutation p to the bits of each of these
numbers and calculate the sum of the resulting values. Please note that, although each of the
resulting values can be represented in int32 data type, their sum does not necessarily have that
property, so it is better to use a wider data type for the sum.

Input

The �rst line of input contains four integers n, a, c and s: the number of operations and the
parameters of the linear congruential generator (1 ≤ n ≤ 100 000 000, and the numbers a, c and s
can be arbitrary integers which can be represented in int32 data type). It is guaranteed that the
period of the generator is 232. The secon line contains p, the permutation of bits: numbers p0, p1,
. . ., p31 among which each integer from 0 to 31 occurs exactly once. Consecutive integers on a line
are separated by a space.

Problem B Developer: Ivan Kazmenko Page 3 of 11



ACM International Collegiate Programming Contest 2013/14
XXXVII St. Petersburg State University Championship, Sunday, December 15, 2013

Output

Print one integer: the sum of n values each of which is the rearrangement of bits in the next
pseudorandom number produced by the generator.

Example

bit-permutation.in

3 1664525 1013904223 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

30 31 0

bit-permutation.out

944619915

Explanation

In the �rst example, we get the following random numbers and their bit permutations:

x1 = 1 015 568 748, p(x1) = 2 031 137 496;
x2 = 1 586 005 467, p(x2) = −1 122 956 362;
x3 = −2 129 264 258, p(x3) = 36 438 781.

The sum p(x1) + p(x2) + p(x3) is equal to 944 619 915.

Problem B Developer: Ivan Kazmenko Page 4 of 11



ACM International Collegiate Programming Contest 2013/14
XXXVII St. Petersburg State University Championship, Sunday, December 15, 2013

Problem C. Cryptocurrency
Input �le: coin.in

Output �le: coin.out

Time limit: 2 seconds (3 seconds for Java)
Memory limit: 256 mebibytes

As is well known, special popularity was recently gained by cryptocurrencies : the �nancial
instruments designed to supersede usual gold and dollars, o�ering decentralization, safety and
no governmental control.

While �mining� one certain cryptocurrency, the following generator is used. First, a prime number
n is chosen. Then the number x = b

√
nc is calculated. After that, the sequence ai = (x+i)2 mod n

is obtained. Each k-smooth number in this sequence is the next key that de�nes the newly �mined�
unit of currency.

Recall that a number q is called k-smooth if and only if it can be represented as a product of
primes with numbers not exceeding k. For example, the number 28 = 22 · 7 = p2

1 · p4 is 4-smooth
and 5-smooth, but it is not 3-smooth.

Your goal is to output the �rst m keys in given sequence.

Input

The only line of input contains three integers: n, m and k (1018 ≤ n ≤ 2 · 1018, n is prime,
1 ≤ m ≤ 5000, 1000 ≤ k ≤ 2000). It is guaranteed that the number n is either the same as in the
example or chosen randomly.

Output

Output m integers: the �rst m keys in order of obtaining them.

Example

coin.in

1000000000000000003 5 1500

coin.out

24000000141 76000001441 94000002206 124000003841 160000006397

Problem C Developer: Oleg Davydov Page 5 of 11



ACM International Collegiate Programming Contest 2013/14
XXXVII St. Petersburg State University Championship, Sunday, December 15, 2013

Problem D. Garlands
Input �le: garlands.in

Output �le: garlands.out

Time limit: 2 seconds (3 seconds for Java)
Memory limit: 256 mebibytes

It's Christmas time! Every house and every store around tries to drag your attention with lights
and candles.

You are decorating your Christmas tree with several garlands. It's windy in St. Petersburg, so you
decide to hammer extra nails in some places to be sure they won't �y away.

To be slightly formal, the Christmas tree is a tree with n vertices. Every garland is a subtree of
it. You can place nails in vertices of the tree.

Each garland must be �xed with at least one nail. However, a single nail �xes all garlands at that
point.

Your task is to �x all garlands using the minimal possible number of nails.

Input

The �rst line of the input �le contains integer n: the number of vertices (1 ≤ n ≤ 100 000). The
second line contains n− 1 integers p2, . . . , pn (1 ≤ pi < i). Theese numbers describe edges (i, pi).

The third line contains integer g: the number of garlands. The following k pairs of line describe
them. Each garland description starts with an integer ki (1 ≤ ki ≤ n), the number of vertices in
the garland. The second line of such description contains ki distinct integers ci,j (1 ≤ ci,j ≤ n for
1 ≤ j ≤ ki): the vertices covered by the garland. These vertices are guaranteed to form a subtree,
that is, if we remove all other vertices from the tree, the remaining part will be connected. It is
also guaranteed that the sum of all ki does not exceed 100 000.

Output

On the �rst line of output, print a single integer x: the minimal number of nails.

On the second line, print x distinct integers: the numbers of vertices to hammer the nails in.

In case of multiple soultions, print any optimal one.

Example

garlands.in garlands.out

3

1 1

2

1

1

2

1 3

1

1

Problem D Developer: Yury Petrov Page 6 of 11



ACM International Collegiate Programming Contest 2013/14
XXXVII St. Petersburg State University Championship, Sunday, December 15, 2013

Problem E. K Paths
Input �le: kpaths.in

Output �le: kpaths.out

Time limit: 2 seconds (3 seconds for Java)
Memory limit: 256 mebibytes

Construct an oriented graph such that there are exactly K di�erent paths from the �rst vertex to
the second vertex. The total number of vertices must not exceed 2 + 2 · log2 K. Graph must not
contain cycles, loops and multiple edges.

Input

The �rst line of input contains an integer K (1 ≤ K ≤ 109).

Output

On the �rst line, print an integer N (2 ≤ N ≤ 2+2 · log2 K), the number of vertices in your graph.

On the next N lines, print the lists of direct successors of all vertices in the following form: on
(i + 1)-th line, print the number of direct successors of i-th vertex and then the numbers of those
successors in ascending order. Vertices are numbered from 1. Separate numbers inside each line
by spaces.

If there is more than one solution, print any one of them.

Examples

kpaths.in kpaths.out

1 2

1 2

0

4 6

4 3 4 5 6

0

1 2

1 2

1 2

1 2

Problem E Developer: Natalya Ginzburg Page 7 of 11



ACM International Collegiate Programming Contest 2013/14
XXXVII St. Petersburg State University Championship, Sunday, December 15, 2013

Problem F. Meeting Point
Input �le: meeting.in

Output �le: meeting.out

Time limit: 2 seconds (3 seconds for Java)
Memory limit: 256 mebibytes

In this problem, you have to pick a meeting point for six people. 4 2 4
1 1 3 0

2 1 2 1 2
0 1 1 1

0 0 0

The map of Eksi Plateau is a grid consisting of equal regular hexagons. They
form a large �hexagon�. Each of its �sides� consists of n small hexagons. Each
small hexagon contains a number: the height of the respective part of the
plateau. In fact, Eksi Plateau consists of regular hexagonal prisms. The lower
bases of these prisms lie in one plane, and their heights correspond to the
numbers on the map. An example of a map for n = 3 is shown on the picture
to the right.

Six men start their journeys in six corner hexagons of the plateau. They want to choose a single
hexagon on the map and meet there. A man can move from a hexagon to any adjacent one sharing
a side with it. However, when the heights of the two hexagons are too di�erent, this is not an easy
task. The complexity of transition to an adjacent hexagon is the absolute value of the di�erence
of heights of the initial hexagon and the adjacent one.

A path on the plateau is a sequence of transitions between adjacent hexagons. The length of a

path is the number of transitions between hexagons in that path. The complexity of a path is the
sum of complexities of all transitions in that path.

After choosing the meeting point, each man moves there along a path which has the minimal
possible length. From all such paths, he chooses one with the least possible complexity.

Choost the meeting point in such a way that the sum of complexities of the six men's paths is
minimal possible.

Input

The �rst line of input contains an integer n, the number of small hexagons on a �side� of the large
�hexagon� (2 ≤ n ≤ 200). The next (2 · n− 1) lines de�ne the elevation map. Each elevation is an
integer between 0 and 9. Each two consecutive numbers are separated by a single space. Attention:
some of these lines also contain spaces at the beginning to make the input more intuitive! For better
understanding of how the input numbers are placed on the map, see the explanatory pictures for
the examples.

Output

Print two integers on a line: the coordinates of the chosen meeting point. The �rst integer is the
number of the line of the map, the second one is the number of the hexagon in that line. The lines
of the map are numbered from one from top to bottom. The hexagons on each line are numbered
from one from left to right. Attention: the numbering of hexagons is de�ned separately for each
line!

Problem F Developer: Ivan Kazmenko Page 8 of 11



ACM International Collegiate Programming Contest 2013/14
XXXVII St. Petersburg State University Championship, Sunday, December 15, 2013

meeting.in meeting.out Notes

3

4 2 4

1 1 3 0

2 1 2 1 2

0 1 1 1

0 0 0

4 2
4 2 4

1 1 3 0
2 1 2 1 2

0 1 1 1
0 0 0

2

9 9

9 9 9

9 9

1 1
9 9

9 9 9
9 9

Explanations

In the �rst example, we choose the second hexagon in the fourth line. Let us write down the
complexity of each shortest path to that hexagon from each of the corner hexagons, and then �nd
the minimal complexity for each corner.

• From the upper left corner: min{3, 3, 5} = 3.
• From the upper right corner: min{3} = 3.
• From the rightmost corner: min{1, 1, 3} = 1.
• From the lower right corner: min{1, 1} = 1.
• From the lower left corner: min{1} = 1.
• From the leftmost corner: min{1, 3} = 1.

The sum of these six minimal complexities is 10. One can check that, if we choose any other
hexagon for the meeting, the sum of six minimal complexities of the paths will be greater.

In the second example, we can choose any hexagon since the complexity of each path on the
plateau is zero. Please note that we can choose a hexagon which has a man on it initially.

Problem F Developer: Ivan Kazmenko Page 9 of 11



ACM International Collegiate Programming Contest 2013/14
XXXVII St. Petersburg State University Championship, Sunday, December 15, 2013

Problem G. Patterns
Input �le: patterns.in

Output �le: patterns.out

Time limit: 2 seconds (3 seconds for Java)
Memory limit: 256 mebibytes

Many applications use patterns to �nd matching strings. One of the simplest pattern de�nitions
follows.

A pattern is a string consisting of lowercase English letters and asterisks (�*�). String s is said to
match pattern p if and only if each asterisk can be replaced with a (possibly empty) string in a
way that the resulting string equals s. Distinct occurrences of the asterisk can be replaced with
distinct or equal strings.

Given two patterns p1 and p2, �nd a string s that matches both of them.

The string s must be non-empty.

Input

The �rst line of input contains the pattern p1. The second line of input contains the pattern p2.
Both lines are non-empty, and their lengths do not exceed 2 · 105 each. It is guaranteed that both
lines contain only lowercase English letters and asterisks (�*�).

Output

In the only line of output, print either a string s matching both patterns or the word �Impossible�
if such a string does not exist. The string s must consist only of lowercase English letters. The
length of s must be between 1 and 106 characters, inclusive.

Examples

patterns.in patterns.out

a

a

a

a

b

Impossible

*

b

b

Problem G Developer: Sergey Melnikov Page 10 of 11



ACM International Collegiate Programming Contest 2013/14
XXXVII St. Petersburg State University Championship, Sunday, December 15, 2013

Problem H. WTF-8
Input �le: wtf8.in

Output �le: wtf8.out

Time limit: 2 seconds (3 seconds for Java)
Memory limit: 256 mebibytes

You are given a string

Nope, you are given several consequent bytes of a WTF-8-encoded string. Here, �WTF� stands for
�Wonderful Text Format�.

WTF-8 encoding is similar but not identical to UTF-8. If you are familiar with UTF-8, please
do not get confused. Anyway, read the statement carefully.

Every character is encoded in the following way. First, it is replaced with its digital code according
to a table. This table is not available in the statement, and it will not be used. The digital code
is an unsigned integer 0 ≤ x < 231.

Second, we choose the shortest possible representation of the code. Each possible representation
is a sequence of bytes. The �rst byte has 0 ≤ y < 7 highest bits set to 1, followed by a bit set to
0. The value y is the number of bytes in the representation.

If y = 0, then the �rst byte is the only byte in the representation, and it represents the code of
x < 27, equal to that byte. Otherwise, there are y − 1 more bytes in the representation. Each of
the remaining bytes has the highest bit set to 1 and the second highest bit set to 0. The code
represented equals to the value of the binary number of concatenated 8− y lowest bits of the �rst
byte and 6 lowest bits of each of the remaining bytes.

For example, the code 36 = 1001002 is represented with a single byte 00100100.
The code 674 = 10101000102 is represented with bytes 11001010 10100010, the code
8364 = 100000101011002 is represented with 11100010 10000010 10101100.

Your task is to calculate the sum of codes of all characters in the input string.

Input

Input contains one or more hexadecimal numbers with exactly two digits each: the bytes. There
are 16 bytes given on each line of input (except maybe the last one). The bytes on a single line
are separated by spaces.

There are no more than 65 536 bytes described in the input.

Hexadecimal digits use characters �0� through �9� (decimal digits) and �A� through �F� (capital
English letters).

Output

Write the only integer number: the sum of all codes.

Examples

wtf8.in wtf8.out

24 C2 A2 E2 82 AC F0 A4 AD A2 158932

Explanation

The input bytes contain four characters: 24, C2 A2, E2 82 AC and F0 A4 AD A2.

Problem H Developer: Natalia Ginzburg Page 11 of 11


