
IV Open Cup in Programming
Grand Prix ¡¡Saratov for Karelia¿¿, Wednesday, January 30, 2008

Problem A. Dominoes in the Box
Input file: domino.in
Output file: domino.out
Time limit: 2 seconds
Memory limit: 64 megabytes

The bottom of a rectangular box has the form of N ×M cm. You must tile it with dominoes of size 1×2
cm. Dominoes must completely cover the bottom of the box, and they must not overlap.

The tiling is called solid, if any line that separates the bottom of the box into two non-empty parts crosses
the interior of at least one domino.

You must create a program that would construct a solid tiling of the bottom of the box.

Input

The first line of the input file contains N and M (1 ≤ N,M ≤ 1000).

Output

If the solid tiling exists, print the rectangular table of lowercase letters of the English alphabet (‘a’. . . ‘z’).
The table must contain N rows and M columns. Two equal adjacent characters denote a domino. For
each character exactly one adjacent character must be equal to it.

If no solid tiling exists, create an empty output file.

Example

domino.in domino.out
6 7 aabbcdd

effgchh
eiigjjk
llmnnok
pqmrros
pqttuus

Page 1 of 11

IV Open Cup in Programming
Grand Prix ¡¡Saratov for Karelia¿¿, Wednesday, January 30, 2008

Problem B. Arcanoid
Input file: arcanoid.in
Output file: arcanoid.out
Time limit: 2 seconds
Memory limit: 64 mebibytes

Aino and friends watch as N -dimensional ball of radius R flies in N -dimensional cube with side length
equal to D. The ball reflects from the walls by the law of light reflection:

• The trajectory before reflection, the trajectory after reflection, and the normal to the reflection
surface at the point where the ball touches the wall are in the same plane;

• The angle which the trajectory of the ball makes to the normal is equal to the angle which the
trajectory after reflection makes to the same normal.

But the ball flies too fast for Aino to notice the reflections from the walls. Your problem is to help Aino
to find the location where the M -th touching of the wall will be. The cube is positioned in such way that
one of its vertices has coordinates (0, 0, ..., 0), another one has coordinates (D,D, ...,D), and its edges
are parallel to coordinate axes.

Input

The input file contains three lines.

The first line contains integer numbers: N (1 ≤ N ≤ 2008), D (1 ≤ D ≤ 1000), R (1 ≤ R < D/2),
M (1 ≤ M ≤ 2008) — the dimension of the cube, the length of its edge, the radius of the ball and the
number of the reflection that Aino is interested in. The second line contains N integer numbers — the
initial coordinates of the center of the ball. It is guaranteed that the ball doesn’t have common points
with the cube’s walls, and is completely inside the cube. The third line contains N integer numbers —
the coordinates of the vector of the ball’s velocity. All coordinates do not exceed 1000. The velocity is
not equal to 0.

Output

Print one line to the output file — the coordinates of the M -th touching point. Each coordinate must be
printed with at least 6 points after the decimal point. It is guaranteed that each time the ball touches
the wall it touches exactly one wall.

Example

arcanoid.in arcanoid.out
4 100 1 1
5 5 5 5
-1 -2 -3 -4

4.000000 3.000000 2.000000 0.000000

Page 2 of 11

IV Open Cup in Programming
Grand Prix ¡¡Saratov for Karelia¿¿, Wednesday, January 30, 2008

Problem C. Degree of Minimality of Spanning Tree

Input file: span.in
Output file: span.out
Time limit: 2 seconds
Memory limit: 64 mebibytes

The scientists of Htrae planet are studying the problem yet unsolved there — finding a minimal spanning
tree in an undirected graph. Everybody know that adding one edge to a tree causes exactly one cycle
to appear. Based on this fact, one of the leading mathematicians of the planet proved a criterion of
minimality for spanning trees — “A spanning tree is minimal if and only if after adding any graph edge
to the given tree, the added edge has the greatest weight in the corresponding cycle.”

Further study of the problem didn’t lead to better results. In order to help scientists it was decided to
run a contest for the best algorithm. Since nobody at Htrae knows how to create the best solution, it
was decided to evaluate solutions based on the minimality criteria. Consider an edge w not included into
the spanning tree. Let us add it to the tree. One new cycle appears. Find the sum of weights of all edges
of the cycle that have a weight greater than w has. Let this sum be y, the number of such edges be k
and the edge w have weight x. In this case the goodness of the edge w is y − kx.

The degree of minimality of the spanning tree is the sum of goodnesses of all edges not included into the
spanning tree.

Given a graph and a spanning tree in it, find the degree of minimality of the spanning tree in the graph.

Input

The first line of the input file contains n and m (1 ≤ n ≤ 75000, n − 1 ≤ m ≤ 100000) — the number
of vertices and edges in the graph, respectively. Each of the following n − 1 lines describes one edge
included into the spanning tree. Each edge is described by three numbers: x y z, where x and y are
the numbers of the vertices connected by the edge and z is the weight of the edge (0 ≤ z ≤ 104). The
following m− n + 1 lines describe edges not included into the spanning tree in the same format.

Output

Output one number — the degree of minimality of the given spanning tree.

Example

span.in span.out
7 10
1 2 5
1 3 6
3 4 3
3 5 2
5 6 1
6 7 1
6 2 2
7 3 7
7 4 2
5 2 4

11

3 3
1 2 2
1 3 2
2 3 1

2

Page 3 of 11

IV Open Cup in Programming
Grand Prix ¡¡Saratov for Karelia¿¿, Wednesday, January 30, 2008

Problem D. Parking

Input file: parking.in
Output file: parking.out
Time limit: 2 seconds
Memory limit: 64 mebibytes

Parking areas in Beerland are extremely popular, so sometimes it is quite impossible to put a car there.
For simplicity let us consider parking as a rectangular field of size N × M , let each car occupy two
adjacent cells (vertically or horizontally). Some cells in the parking are occupied by guards, so moving a
car through such cells is impossible.

You can ask a worker on the parking move any car one cell forward or one cell backwards (provided that
the corresponding cell is free). You can move any car several times. Your goal is to put your car to the
parking. In order to do so you must have two adjacent free cells in the parking. You don’t care whether
you will be actually able to drive to the corresponding location, you can use a helicopter to put your car
there.

Input

The first line of the input file contains two numbers N and M (1 ≤ N,M ≤ 500) — the size of the
parking. The following N lines contain M characters each and describe the parking. Each character is
either ‘.’ — free space, or ‘X’ — a guardian. The next line contains K — the number of cars on the
parking. Each of the following K lines describes a car, the car is described by four numbers x1, y1, x2,
y2, (1 ≤ x1, x2 ≤ N , 1 ≤ y1, y2 ≤ M), where (x1, y1) and (x2, y2) are the coordinates of the cells occupied
by the car. The top-left cell has coordinates (1, 1), the bottom-right — (N,M).

Output

If it is possible to put a car to the parking, print “Yes”. In the other case print “No”. If it is possible to
put a car, the next line must contain the number of movements, and then the movements, one on a line.
Each movement is described by numbers x1, y1, x2, y2, (1 ≤ x1, x2 ≤ N , 1 ≤ y1, y2 ≤ M), where (x1, y1)
are the coordinates of the free cell where the car moves to, and (x2, y2) are the coordinates of the cell
adjacent to (x1, y1) which is already occupied by the car in question.

Example

parking.in parking.out
3 6
....XX
XXX.XX
XXX...
3
1 2 1 3
1 4 2 4
3 4 3 5

Yes
3
3 6 3 5
3 4 2 4
1 4 1 3

Page 4 of 11

IV Open Cup in Programming
Grand Prix ¡¡Saratov for Karelia¿¿, Wednesday, January 30, 2008

Problem E. Coloring Cacti

Input file: coloring.in
Output file: coloring.out
Time limit: 2 seconds
Memory limit: 64 megabytes

A cactus is any member of the succulent
plant family Cactaceae, native to the
Americas.
Cacti come in a wide range of shapes and
sizes.

From Wikipedia — free encyclopedia

Cactus is a connected undirected graph such that each edge in it belongs to at most one cycle. You must
color vertices of a cactus into minimal number of colors so that no edge connects two vertices of the same
color.

Input

The first line of the input file contains N and M (1 ≤ N ≤ 50000, 0 ≤ M ≤ 10000), where N is the
number of vertices in the cactus. All edges of the cactus are described by M paths, each edge belongs
to exactly one such path. The following M lines contain descriptions of these paths. Each description
starts with ki (2 ≤ ki ≤ 1000) — the number of vertices in the path. It is followed by ki numbers, each
of them from 1 to N , they describe vertices along the path. Any two vertices are connected by at most
one edge. No edge connects a vertex to itself.

Output

The first line of the output file must contain K — the minimal number of colors. The second line must
contain N numbers, the i-th of these numbers must be ai (1 ≤ ai ≤ K) — the color of the i-th vertex.
If there are several optimal colorings, output any one.

Example

coloring.in coloring.out
1 0 1

1

4 1
5 1 2 3 4 1

2
1 2 1 2

3 1
4 1 2 3 1

3
1 2 3

Page 5 of 11

IV Open Cup in Programming
Grand Prix ¡¡Saratov for Karelia¿¿, Wednesday, January 30, 2008

Problem F. Cacti strike back
Input file: cacti.in
Output file: cacti.out
Time limit: 2 seconds
Memory limit: 64 megabytes

As you might remember, a cactus is a connected undirected graph with each edge belonging to at most
one simple cycle. Given a weighed graph with each connected component being a cactus, color each of its
vertices to one of K colors in such a way that the sum of weights of edges connecting vertices of different
colors is minimized. You must use each color at least once.

Input

The first line of the input contains three integer numbers N (1 ≤ N ≤ 10000), M (M ≥ 0) and K
(1 ≤ K ≤ N,K ≤ 1000). N is the amount of vertices, M is the amount of edges, K is the amount of
colors. The next M lines describe the edges: each line contains three integer numbers a, b, c (1 ≤ a, b ≤ N ,
0 ≤ c ≤ 10000), where a and b are vertices connected by the edge, and c is its weight. Any two vertices
are connected by at most one edge. No edge connects a vertex to itself.

Output

The first line of the output file must contain the sum of weights of edges that would connect the vertices
of different colors. The second line must contain N numbers, the i-th of these numbers must be the color
of the i-th vertex in the optimal coloring.

Example

cacti.in cacti.out
2 0 1 0

1 1

3 3 2
1 2 1
2 3 2
1 3 1

2
1 2 2

Page 6 of 11

IV Open Cup in Programming
Grand Prix ¡¡Saratov for Karelia¿¿, Wednesday, January 30, 2008

Problem G. Filter Tables
Input file: iptables.in
Output file: iptables.out
Time limit: 2 seconds
Memory limit: 64 mebibytes

Linux operating system is equipped with a layer 3 network subsystem called iptables, responsible for
filtering all IP packets, either incoming, outcoming or forwarded. You are to implement basic functionality
of a similar subsystem.

A packet to be processed is described by a string

recv IN=〈itf 〉 OUT=〈itf 〉 SRC=〈ip〉 DST=〈ip〉 PROTO=〈protocol〉 SPT=〈port〉 DPT=〈port〉 LEN=〈size〉
Here

• itf : Interface through which the packet has been input or has to be output. Interfaces are denoted
eth0–eth15. Input packets have empty output interface, output packets have empty input interface,
and forwarded packets have non-empty input and output interfaces.

• ip: IP address in standard four octet notation: x1.x2.x3.x4, where 0 ≤ xi ≤ 255. IP address might
be thought of as an unsigned 32-bit integer, with most significant byte x1 written first.

• protocol: Protocol description — one of TCP, UDP, ICMP for the purpose of this task.

• port: Port number, integer ranging from 1 to 65535.

• size: Packet size in bytes, integer ranging from 1 to 2000.

Iptables system is based on the notion of a chain. A chain is a sequence of rules and a default policy.
Each rule is a set of conditions and an action. There are three predefined chains, called INPUT, OUTPUT
and FORWARD, used for input, output and forwarded packets, respectively. User-defined chains might also
be present, but we neglect this possibility in this task. One should remember, therefore, that the next
paragraph describes only a very simplified version of true iptables functionality.

Each packet is processed as follows. First, corresponding standard chain is chosen. Then the packet is
checked against each rule of this chain, in order of their creation. If the packet matches the rule condition,
its action is executed. Action can be final (ACCEPT, DROP, REJECT) — then this packet is not processed
further. We consider only two non-final actions LOG — it doesn’t affect the packet (just adds a line into
system log file), and RETURN — for standard chains it means that the chain default policy is to be applied
immediately to the packet being processed.

If a packet traverses the whole of a standard chain, chain default policy (always a final action) is applied
unconditionally.

For each rule of each chain, as well as for default policies, packet count and total size counters are kept.
They are increased whenever rule action or default policy are invoked for a packet.

At the very beginning all standard chains are empty, have zero counters and their default policy is ACCEPT.

For solving this task one has to check where a given ip address ip enters into a subnetwork net/mask,
where net is given in four-octet IP address notation, and mask is an integer ranging from 0 to 32. Then
an IP address ip enters into given subnetwork if after representing ip by an unsigned 32-bit integer and
cleaning its 32−mask least significant bits it equals net.

One is allowed to manipulate chains as follows:

Page 7 of 11

IV Open Cup in Programming
Grand Prix ¡¡Saratov for Karelia¿¿, Wednesday, January 30, 2008

• iptables -F chain — clean chain named chain. All rules from this chain are dropped, all counters
are reset, default policy is set to ACCEPT.

• iptables -P chain target — set target default policy for chain chain. Policy counters are reset
to zero.

• iptables -Z chain — reset to zero all rule and policy counters in given chain.

• iptables -A chain [-i interface] [-o interface] [-p proto] [--sport port] [--dport port] [-s [!]
ip | net/mask] [-d [!] ip | net/mask] -j target — add rule into given chain. Parameters can be
given in any order.

-i interface IN-interface of packet must have given value.

-o interface OUT-interface of packet must equal given value.

-p proto packet protocol must be equal to proto.

--sport port packet SPT must coincide with port.

--dport port packet DPT must coincide with port.

-s [!] ip | net/mask only packets with SRC equal to ip, or lying in subnetwork net/mask,
match. Exclamation mark means negation of condition.

-d [!] ip | net/mask only packets with DEST equal to ip, or lying in subnetwork net/mask,
match. Exclamation mark means negation of condition.

-j target action.

• iptables -vL — output all chain counters in order INPUT, OUTPUT, FORWARD. Standard
chain header: “Chain chain (policy policy pkts packets, bytes bytes)”. Here chain is chain
name (one of INPUT, OUTPUT, FORWARD), policy — default policy, pkts and bytes is the quan-
tity and total size of packets, to which default policy has been applied. Statistics table for all
rules of given chain follows. Column names are: “pkts bytes target proto in out source
destination sport dport”. All columns are right-justified by spaces: source and destination
are 22 characters wide, all other columns are 8 characters wide. For each chain rule the quantity
and total size of matched packets, rule action, protocol, input and output interfaces, source, des-
tination, source and destination ports are output. If a parameter wasn’t specified in a rule, one
should output anywhere for IP address fields, and any for other fields. If a subnet mask net/mask
with mask = 32 is output, then the “/32” part is omitted. Follow the sample output as close as
possible.

Input

Input file contains packet descriptions and iptables commands, defined above, as well as empty lines.

Output

For each statistics command output all three statistics tables, followed by an empty line.

Page 8 of 11

IV Open Cup in Programming
Grand Prix ¡¡Saratov for Karelia¿¿, Wednesday, January 30, 2008

Example

iptables.in
iptables -A INPUT -p TCP --dport 22 -j ACCEPT

iptables -A INPUT -p TCP --dport 445 -j LOG

iptables -A INPUT -p ICMP -s 192.168.101.0/24 -j ACCEPT

iptables -A INPUT -j DROP

iptables -A FORWARD -d 212.193.33.130/32 --dport 80 -j ACCEPT

iptables -A FORWARD -s ! 192.168.101.0/24 -j REJECT

iptables -P FORWARD DROP

iptables -vL

recv IN=eth0 OUT= SRC=212.193.32.1 DST=192.168.0.1 PROTO=TCP SPT=6023 DPT=80 LEN=60

recv IN=eth0 OUT=eth1 SRC=212.193.32.1 DST=192.168.0.1 PROTO=TCP SPT=6023 DPT=80 LEN=40

iptables -vL

recv IN=eth0 OUT= SRC=212.193.32.1 DST=212.193.33.130 PROTO=TCP SPT=6023 DPT=80 LEN=55

recv IN=eth1 OUT= SRC=192.168.101.13 DST=192.168.101.1 PROTO=TCP SPT=7013 DPT=445 LEN=12

recv IN=eth0 OUT= SRC=192.168.101.13 DST=192.168.101.1 PROTO=ICMP SPT=7013 DPT=445 LEN=10

iptables -vL

iptables.out
Chain INPUT (policy ACCEPT 0 packets, 0 bytes)

pkts bytes target proto in out source destination sport dport

0 0 ACCEPT TCP any any anywhere anywhere any 22

0 0 LOG TCP any any anywhere anywhere any 445

0 0 ACCEPT ICMP any any 192.168.101.0/24 anywhere any any

0 0 DROP any any any anywhere anywhere any any

Chain OUTPUT (policy ACCEPT 0 packets, 0 bytes)

pkts bytes target proto in out source destination sport dport

Chain FORWARD (policy DROP 0 packets, 0 bytes)

pkts bytes target proto in out source destination sport dport

0 0 ACCEPT any any any anywhere 212.193.33.130 any 80

0 0 REJECT any any any ! 192.168.101.0/24 anywhere any any

Chain INPUT (policy ACCEPT 0 packets, 0 bytes)

pkts bytes target proto in out source destination sport dport

0 0 ACCEPT TCP any any anywhere anywhere any 22

0 0 LOG TCP any any anywhere anywhere any 445

0 0 ACCEPT ICMP any any 192.168.101.0/24 anywhere any any

1 60 DROP any any any anywhere anywhere any any

Chain OUTPUT (policy ACCEPT 0 packets, 0 bytes)

pkts bytes target proto in out source destination sport dport

Chain FORWARD (policy DROP 0 packets, 0 bytes)

pkts bytes target proto in out source destination sport dport

0 0 ACCEPT any any any anywhere 212.193.33.130 any 80

1 40 REJECT any any any ! 192.168.101.0/24 anywhere any any

Chain INPUT (policy ACCEPT 0 packets, 0 bytes)

pkts bytes target proto in out source destination sport dport

0 0 ACCEPT TCP any any anywhere anywhere any 22

1 12 LOG TCP any any anywhere anywhere any 445

1 10 ACCEPT ICMP any any 192.168.101.0/24 anywhere any any

3 127 DROP any any any anywhere anywhere any any

Chain OUTPUT (policy ACCEPT 0 packets, 0 bytes)

pkts bytes target proto in out source destination sport dport

Chain FORWARD (policy DROP 0 packets, 0 bytes)

pkts bytes target proto in out source destination sport dport

0 0 ACCEPT any any any anywhere 212.193.33.130 any 80

1 40 REJECT any any any ! 192.168.101.0/24 anywhere any any

Page 9 of 11

IV Open Cup in Programming
Grand Prix ¡¡Saratov for Karelia¿¿, Wednesday, January 30, 2008

Problem H. ATM
Input file: cash.in
Output file: cash.out
Time limit: 2 seconds
Memory limit: 64 megabytes

Imagine that you are an ordinary student. And you are very hungry. Today is a holiday for all students
— the day of getting the stipend. There are very long queues for ATM.

It is known that you have S roubles on your account. ATM can dispense notes of 50, 100 and 500 roubles.
When dispensing cash, ATM at first maximimizes the number of 500-rouble notes, then maximizes the
number of 100-rouble notes.

It seems easy, but life of an ordinary student is affected very much by trolleybuses used to reach your
university from your home. In these trolleybuses, it is impossible to get change from any note but
50-rouble one. Your favorite shaurma stall also won’t accept 500-rouble notes.

So your task is to get all money from your account, but maximizing the number of 50-rouble notes first,
the number of 100-rouble ones next. The only problem is the long queue behind you, they’ll become
furious if you will use ATM more than N times.

Input

Input file contains two integers: S (0 ≤ S ≤ 109), S is always divisible by 50, and N (0 < N ≤ 105). S is
the amount of money on your account and N is the maximal possible number of times you can use the
ATM.

Output

Output the integer K (0 ≤ K ≤ N) on the first line of output. K is the number of times you should use
the ATM. Then output K lines — i + 1-th line must contain ai (0 ≤ ai ≤ S) — the amount of money to
withdraw during i-th operation. All ai must be divisible by 50 and their sum must be equal to S.

Example

cash.in cash.out
0 100000 0

100 1 1
100

100 2 2
50
50

Page 10 of 11

IV Open Cup in Programming
Grand Prix ¡¡Saratov for Karelia¿¿, Wednesday, January 30, 2008

Problem I. Monsters
Input file: monsters.in
Output file: monsters.out
Time limit: 2 seconds
Memory limit: 64 mebibytes

Good news from Berland! New part of the famous game “The Heroes of Knout and Cakes” has appeared.
In one of the missions you can help main hero Mesher to deliver cakes. But there are N greedy monsters
on his path. Monsters want to steal cakes from our hero.

Fortunately, Mesher took with him his favourite three-volume edition of a famous author and can use it
for defense, because some parts of this book will affect anybody. To complete his mission Mesher has to
defeat monsters. Battle occurs by steps. In the beggining of each move, all monsters take some cakes
away from Mesher (k-th monster takes pk cakes). Then, Mesher reads one chapter from the book to
one monster. This chapter affects only this monster, because other monsters don’t hear it. Once some
monster hears gk chapters from the book, it becomes peaceful and stops taking cakes away. In one move
Mesher can read only one chapter.

Your task is to find minimal amount of cakes that Mesher will lose.

Input

First line of input file contains single integer number 1 ≤ N ≤ 100 — amount of monsters. Then N lines
follow, k-th line contains two integer numbers gk, pk 1 ≤ gk, pk ≤ 10000 — k-th monster characteristics.

Output

First line of output file must contain minimal number of cakes. In second line print a permutation of
integers 1 . . . N — the order in which Mesher must destroy monsters. If there are multiple solutions,
output any.

Example

monsters.in monsters.out
3
4 1
1 2
3 3

22
2 3 1

Page 11 of 11

