
Croatian Open Competition in Informatics
Round 3, December 11th 2021 Editorial

Editorial

Tasks, test data and solutions were prepared by: Nikola Dmitrović, Dominik Fistrić, Bartol Markovinović,
Bojan Štetić, Pavel Kliska, and Krešimir Nežmah. Implementation examples are given in the attached
source code files.

Task Lampice

Prepared by: Bartol Markovinović
Necessary skills: for-loop, array/list

The problem asks to find a continuous subarray (that is pattern) which repeats k times in a row. The
simplest way to do this is to iterate over all continuous subarrays and check if it repeats k times in a row.
We can iterate over these subarrays using two nested for loops, one going over all possible left ends of
the subarray, and one going over all right ends. Denote by l and r the left and right end of the subarray,
respectively. The length of the current subarray (denote it by d) is then equal to r − l +1. In order to check
whether it repeats k times, we must check whether the following k −1 subarrays of length d are the same as
the initial subarray (from l to r), that is whether [l + d, r + d], [l + 2d, r + 2d], . . . , [l + (k − 1)d, r + (k − 1)d]
is the same as [l, r]. This is done using two nested for loops, one going over those subarrays and the other
checking if they are the same with the initial one (from l to r).

Task Cijanobakterije

Prepared by: Pavel Kliska
Necessary skills: tree traversal, diameter of tree

One possible characterisation of a tree is that it is an acyclic graph with n nodes and n − 1 edges. This
means that in the first subtask, the problem is actually to determine the length of the longest chain in a
tree. This is a standard problem of finding the diameter of a tree. It can be solved by noticing that all
nodes which are furthest away from an arbitrary node are the ends of some longest chain. Therefore, it is
sufficient to take an arbitrary node of the tree, find a node which is furthest away from it, and then find
the distance from this node to the node furthest away from it.

For the whole solution, one should notice that when connecting two trees, the diameter of the new tree
can’t be larger than the sum of their diameters (otherwise, we would have a chain in the first or the second
tree which is larger than it’s diameter). On the other hand, a diameter which has the size of the sum
of the two diameters is achievable because we can connect the ends of the two diameters. Therefore, by
repeatedly connecting the trees, the largest diameter we can obtain is equal to the sum of the diameters
of the individual trees, which is also the answer to the problem.

Task Akcija

Prepared by: Krešimir Nežmah
Necessary skills: dynamic programming and binary search or greedy and fracturing search

The subsets from the problem have a very rich structure and it is possible to arrive at the solution
from different angles. The scoring was generous, but the last subtask should be challenging. For most
contestants, the most natural idea was some sort of dynamic programming, but we will present a solution
which uses a different (perhaps more complex) idea, which can be generalized to other problems that ask
for the k-th best answer.

The presented solution consists of several parts:

1. How to check if a subset is obtainable?

2. How to find the best obtainable subset?

1 of 5



Croatian Open Competition in Informatics
Round 3, December 11th 2021 Editorial

3. How to find candidates for the next best obtainable subset?

4. How to choose between the candidates to arrive at the k best ones?

The proofs are left as an exercise for the reader.

How to check if a subset is obtainable?

Claim 1: If a subset is obtainable, a valid sequence of calls can be made by ordering the products by di.

Claim 2: In an empty array put +1 on each position i (i = 1, ..., n), and −1 on each position di and make
prefix sums over it. A set of products is obtainable iff there are no negative numbers in such an array.

We can build a min. segment tree over the array from claim 2, which allows us to insert/erase products
while maintaining the information whether the current set is obtainable. An update is simply ±1 for some
suffix of the array.

How to find the best obtainable subset?

The following greedy algorithm works:
Sort the set in question so that w1 < ... < wn.
We iterate over the products in order and try to add the current product if it maintains the attainability
property (which we can check with the segment tree).

Claim 3: The greedy algorithm produces a set which is maximum in size, and out of all such sets it has
the minimum cost, i.e. it is the best choice.

Proof outline: The greedy algorithm produces an obtainable subset which can’t be enlarged (i.e. is
maximal). Every two maximal subsets are actually of the same size - the maximum one. The order
w1 < ... < wn gives the minimum cost.

How to find candidates for the next best obtainable subset?

Let S be the best obtainable subset of the index set {1, ..., n}. For each i ∈ S we want to know what is
the best obtainable subset of {1, ..., n} \ {i}. One of them will clearly be the second best, but as we’ll see
later, it’s useful to know the cost for all of them.

Claim 4: The best obtainable subset of {1, ..., n} \ {i} is made by removing i from S and adding some
j ̸∈ S.

We can find the desired j for some i in the following way:
In the segment tree we store the array from claim 2 for set S, and we make an update of +1 for the suffix
starting at di, which corresponds to removing i from S. A valid choice for j is now any index such that
there are no zeroes in the suffix of the array starting from dj . Therefore, dj has to be to the right of the
rightmost zero in the current array, which is actually the rightmost zero to the left of di (now we see that
the update was unnecessary, and we could have made a segment tree query to find the rightmost zero
left of di). In any case, the only condition for chosing j is that dj ≥ c, for some c that we know how to
calculate. Out of all such j, we should choose the one with minimum wj . The answer can be precomputed
for all c by doing a sweep over the indices outside of S, decreasing by dj .

How to choose between the candidates to arrive at the k best ones?

In a given moment, the current search spaces will be described by describing the status of each index:

• This index must be in the set.

• This index can’t be in the set.

• For this index we have a choice whether it is in the set or not.

2 of 5



Croatian Open Competition in Informatics
Round 3, December 11th 2021 Editorial

We’ll have a priority queue to store all the different search spaces not yet explored. The search spaces will
be disjoint and their union will cover all possibilities not yet visited. In the priority queue, they will be
sorted by the cost of the best obtainable subset within that search space.

It was already mentioned how to find the best obtainable subset within a search space. The situation
is a bit different since this time we have indices which must/can’t be taken. But the idea can easily be
modified just by not even taking into consideration the indices which we can’t take, and the ones we must
take we use for updating the segment tree before executing the greedy algorithm. It’s easy to see that the
mentioned claims are still true in this modified case.

We pop the minimum element from the priority queue to determine the next best obtainable subset.
The poped search space then needs to be partitioned into smaller pieces which don’t include the best
obtainable subset. Let S be this best subset. The smaller subsets have the following form:

• The first element from S can’t be taken, for the rest we can choose.

• The first element from S must be taken, the second must not, for the rest we can choose.

• The first two elements from S must be taken, the third must not, for the rest we can choose.

• ...

Of course, the indices outside of S are left to be of the same status as they were before.
According to what was mentioned so far, when deleting an index from S, it is enough to add a single new
index. Therefore, when adding new search spaces to the priority queue, we won’t keep track of the status
of all indices, rather we’ll keep track of just the indices which change their status.

We’ll have a total of k popmin operations. For each of them, we’ll have to find the best obtainable subset
for some search space, and then partition it into smaller pieces (and for each of them determine it’s cost,
to be able to add it to the priority queue). Using the segment tree, this can all be done in O(n log n) for
each popmin operation. The priority queue will have at most nk elements. The total complexity is then
O(nk log(nk)).

The presented idea is called fracturing search. The reason a lot of things are true for these obtainable
subsets is because they have a matroid structure.

Task Ekoeko

Prepared by: Pavel Kliska and Krešimir Nežmah
Necessary skills: ad-hoc, greedy, Fenwick tree, counting inversions

Let’s first solve the subtask where the first and the second half of the string are anagrams. It’s never
useful to swap two adjacent characters if they are the same, which is why the relative order of equal
characters never changes. That’s why we can pair up the i-th occurrence of some letter in the first half
with the i-th occurrence of that letter in the second half, and it the end these characters have to be in
the same positions in their corresponding halves. In this way we obtain n pairs and the problem can
be formulated as follows: given a sequence of 2n numbers, where the first and the second half are both
permutations of 1, 2, . . . , n, equate the halves using the minimum number of adjacent swaps.

We claim that it’s optimal to make swaps only in the second half until we make it equal to the first half.
To show this, denote by d(p, q) the minimum number of swaps to turn a permutation p into another
permutation q. Notice that for every permutation r, we can get from p to q by first going from p to r
and then from r to q, so we conclude that d(p, r) + d(r, q) ≥ d(p, q). In our case, r represents the final
permutation which will be repeated in each half. We see that equality occurs for example for r = p, which
is what we wanted to show.

Without loss of generality, we can change the labels of the pairs so that the first half consists precisely
of the numbers 1, 2, . . . , n, and the second half is some permutation. This is now a classic problem of

3 of 5

https://usaco.guide/adv/fracturing-search?lang=cpp
https://codeforces.com/blog/entry/69287


Croatian Open Competition in Informatics
Round 3, December 11th 2021 Editorial

sorting a permutation with the minimum number of swaps, which turns out to be the same as counting
the number of inversion, i.e. number of pairs of indices i < j where qi > qj . We can count the number
of inversions in O(n log n) using a Fenwick tree. Alternatively, you can think of it as doing a greedy
algorithm by first moving the number 1 in permutation q to the first position, then number 2 to the
second position and so on. For more details and similar ideas see here.

For the whole solution, we must also at some point get the initial string to a state in which the first and
the second half are anagrams. Having in mind the partition into n pairs, we know for each letter whether
it should end up in the first or in the second half. In other words, we have n left characters and n right
characters which have to end up in their respective halves. We can make all swaps between left and right
characters before making any swaps between two left or two right characters, so it’s optimal to first get
each letter to the desired half, and then solve the problem as described above. It’s easy to show that we
should first move the first left character to the first position, then the second left character to the second
position, and so on. The number of swaps needed to get a left character to its final position is equal to
the number of right characters which are to the left of it. This can be calculated in O(n), making the
final complexity O(n log n).

Task Kućice

Prepared by: Krešimir Nežmah
Necessary skills: geometry, circular sweep line, two pointers

For the first subtask, the number of points within the convex hull of any subset of points is equal to the
size of that subset, so the expected value is n

2 and m = 2n−1n.

We can calculate m by going over each of the 2n subsets of points, finding the convex hull and checking to
see how many points lie in the hull. A naive implementation of this was sufficient to solve the subtask in
which n ≤ 15.

We can also calculate m in a different way - by fixing a point and counting how many subsets there
are where the point lies in the hull. It turns out that it’s easier to count the complement, i.e. how
many subsets there are whose hull doesn’t contain the fixed point. Notice that after fixing a point and
a subset whose hull doesn’t contain it, there is always a line that passes through the point, but which
doesn’t intersect the hull. If we call the fixed point P , we can think of this line as rotating around P
counterclockwise until it hits a point Q on the hull (see image above).

4 of 5

https://codeforces.com/blog/entry/92130


Croatian Open Competition in Informatics
Round 3, December 11th 2021 Editorial

For a fixed choice of P and Q it is sufficient to find the number of points which lie on one side of the line
PQ. If we call this number k (not counting Q), then the number of subsets whose hull doesn’t contain P
and for which Q is the point that is ’first in the counterclockwise direction’ is 2k.

Therefore, the solution can be determined in the following way. Fix a point P and sort the remaining
points circularly around P . Iterate over Q and maintain the number of points on each side of the line PQ.
The points in a halfplane form a circular segment, so it is enough to maintain the last point (with respect
to the circular order) that is still in the current halfplane, using the method of two pointers. For each
point P we do one sort in O(n log n) and then calculate the number of subsets not containing P in O(n)
with two pointers. The total complexity is then O(n2 log n).

For the circular sort and for maintaining the current halfplane it is helpful to use the function CCW(A, B, C)
which determines for three given points A, B and C whether they are listed in counterclockwise order:

CCW(A, B, C) = xA(yB − yC) + xB(yC − yA) + xC(yA − yB),

where CCW(A, B, C) > 0 if and only if the points A, B and C are listed in counterclockwise order. To sort
the points circularly, we can divide them into the ones above and the ones bellow point P , sort these two
groups separately, and then merge them. Within a group we use the CCW function as a comparator with
arguments being the two points in question and the fixed point P .

5 of 5


