
Croatian Open Competition in Informatics
Round 1, October 16th 2021 Editorial

Editorial

Tasks, test data and solutions were prepared by: Nikola Dmitrović, Dominik Fistrić, Bojan Štetić, Paula
Vidas, Pavel Kliska, and Krešimir Nežmah. Implementation examples are given in the attached source
code files.

Task Ljeto

Prepared by: Pavel Kliska
Necessary skills: for-loops, arrays/lists

Using an array z[8], for each of the eight players we can keep track of the last time this player sprayed
someone from the other team. Initially, we set each of these values to -11. Then, reading the input line by
line, we add 100 points to the teams depending on if ai ≤ 4. To determine if a spray is a dobule-spray, it
is sufficient to check if ti − z[ai − 1] ≤ 10, and if so, we should add an additional 50 points to that team.
Finally, for each line we should update the value z[ai − 1] = ti.

Task Kamenčići

Prepared by: Pavel Kliska and Krešimir Nežmah
Necessary skills: prefix sums, dynamic programming

Notice that the state of the game is completely determined by only three numbers: l - the leftmost
pebble still in the game, r - the rightmost pebble still in the game and m - the number of red pebbles
collected so far by the player whose turn it is. Using prefix sums on the number of red pebbles in the
array, from these number we can easily determine which player will win. Since n, k ≤ 350 and from each
game state we can make only two possible moves, a natural idea is to use dynamic programming. The
state will be dp[l][r][m] which will be 1 if the current player can win, and 0 otherwise. The number of
red pebbles collected so far by the other player can be determined from the information of the state:
h = (num. of red pebbles) −m − (num. of red pebbles in interval l, r), where we used h to denote this
number. The transition is defined as follows:

• dp[l][r][m] = 0, if m ≥ k

• dp[l][r][m] = 1, if h ≥ k

• dp[l][r][m] = !dp[l + 1][r][h] | !dp[l][r − 1][h], otherwise

Task Logičari

Prepared by: Krešimir Nežmah
Necessary skills: graphs, dynamic programming on trees

We will call nodes which will have blue-eyed logicians on them black nodes, and the other nodes will be
called white nodes. Notice that every black node has exactly one black neighbour and that it is also that
node’s neighbour. Thus, the black nodes come in pairs as the endpoints of certaint edges.

For the first subtask, one should notice that the nodes in a cylce should alternate between two black nodes
and two white nodes, so the solution exists only when n is divisible by 4 and the answer is then n/2.

The second subtask can be solved by trying out all possibilities for the black nodes with time complexity
O(2nn).

For the remaining subtasks, one should notice that the graph contains exactly one cycle, where from each
node of the cycle a tree might hang off rooted at that node. Using a DFS we can find that cycle and then
remove one of the edges of the cycle. One of the ends we will call the root, and the other one will be the

1 of 7



Croatian Open Competition in Informatics
Round 1, October 16th 2021 Editorial

special node. After removing the edge, the remaining graph is a tree, which we will root in the mentioned
root node.

The task will be solved with dynamic programming on the obtained tree. We will fix one of the possibilities
for the choice of color of the root and the special node (4 possibilites), and add this information to
the state of our dp. The state will have the current node which determines the current subtree and an
additional 4 flags: the state is DP [x][me][up][rt][sp] which denotes the least number of black nodes in the
subtree of node x if the color of node x is written in the flag me, the color of the parent of x is up, the
color of the root is rt, and the color of the special node is sp. In the state we assume that the parent of
x has already taken care of having a black neighbour, so that we are left to determine the colors of the
nodes in the subtree of x.

The transition is as follows. First we determine the cases in which the flags in the state don’t match up
(so the answer is immediately -1 for this state). This happens when:

• x is the root, and me 6= rt

• x is the special node, and me 6= sp

• x is the special node, and rt i up are black - then x is covered by two black neighbours.

Then we figure out if the current node x already has a black neighbour. This is true either when up
is black, or if x is the root and sp is black, or if x is the special node and rt is black. If x happens to
already be covered, none of his children are allowed to be black, so the solution is given by summing the
expression DP [v][white][me][rt][sp] over all children v of x. If x is not covered, we have to choose one of
the children which will be black, and the rest of them will be white. We do this by calculating the same
sum as above, except changing the me flag for one of the children to ’black’. We try this for each child
and determine which one gives the least result.

Task Set

Prepared by: Krešimir Nežmah
Necessary skills: convolutions, FWHT and similar, mathematics

For the first subtask it is sufficient to try out every triplet of cards and check whether it forms a set in
O(n3k).

For the second subtask, one should notice that if we choose two cards, the third card needed for a set is
uniquely determined. Namely, for each position, if the corresponding characters in the first two cards are
the same, then the third character has to be equal to them, and if they are different, the third character
will be the remaining one. With time complexity O(n2k) we can now try out every pair of cards and
check whether there exists a third card which will form a set with them. Of course, we should first record
in an array of size 3k for each type of card if it shows up in the input.

From now on, we will assume that the characters in question are 0, 1 and 2 instead of 1, 2 and 3, so that
we can view each card as a number in base 3. Let’s try to come up with a simple rule that associates a
pair of characters with the third character needed for a set. In other words, we are looking for a rule that
acts in the following way:

(0, 0) 7→ 0, (1, 1) 7→ 1, (2, 2) 7→ 2, (0, 1) 7→ 2, (0, 2) 7→ 1, (1, 2) 7→ 0

We can notice that (a, b) 7→ −(a + b) mod 3, or equivalently, the characters a, b and c form a set if and
only if (a + b + c) mod 3 = 0. Now let’s make an analogy with the bitwise xor operation. This operation
is denoted by ⊕ and represents addition modulo 2 with the digits in base 2. In this problem we will
consider addition modulo 3 with the digits in base 3, which we will denote by ∗. Having in mind the
things mentioned above, three cards a, b and c form a set if and only if a ∗ b ∗ c = 0, where the cards are
thought of as numbers in base 3.

2 of 7



Croatian Open Competition in Informatics
Round 1, October 16th 2021 Editorial

Let’s fix some card c and try to figure out how many pairs of cards a and b exist so that a ∗ b = −c. For
each individual c we can calculate this in O(nk) so the total complexity is O(n2k), but we will show a
way to find the answer for all cards c simultaneously in the complexity O(3kk). If instead of the operation
∗ we had the operation +, the problem could be solved by calculating the desired +-convolution with
fast multiplication of polynomials using FFT. In this problem we will therefore try to modify this idea to
calculate the ∗-convolution.

The operations ⊕ and ∗ are very similar and the ∗-convolution is calculated in the same manner as the
xor-convolution. Thus, what follows is a description of the modification of the ’fast walsh-hadamard
transformation’ (FWHT) to work modulo 3. More about this can be found on this codeforces blog. (P.S.
the day before the contest, another great blog on the topic appeared on codeforces: link)

At a high-level, the idea is the following:

• The given deck of cards is represented by a polynomial.

• Each term in the polynomial represents a certain type of card.

• The coefficients of the polynomial represent the number of times a card appears in the deck. In the
beginning, all of the coefficients are either 0 or 1.

• We will square the polynomial to get new coefficients which represent the result of the desired
convolution. (For now this corresponds to the + operation).

• Before multiplying, we will convert the polynomial from coefficient form to point value form as a
sequence of calculated values (xi, P (xi)), which is more desirable for multiplication.

• The result of the multiplication should be converted back to coefficient form.

Regular multiplication of polynomials corresponds to the operation +, that is (xa, xb) 7→ xa+b. We would
like to make a modification so that (xa, xb) 7→ xa∗b. We need to make two modifications:

• 1) Addition should be done separately for each digit.

• 2) Addition should be done modulo 3.

Problem 1) can be solved by introducing a polynomial with k variables x0, x1, ..., xk−1. For example, a
pair of cards ’1123’ and ’2321’ (that is ’0012’ and ’1210’) is represented by a polynomial

P (x3, x2, x1, x0) = x0
3x0

2x1
1x2

0 + x1
3x2

2x1
1x0

0.

Multiplication now correspond to addition of the digits separately. Looking at each of the varibles
separately, the polynomial is of degree at most 2, but when squaring the degree might grow larger.

To convert a polynomial (which remember has 3k coefficients) to point-value form, we will calculate
the value of the polynomial at 3k different points. We will choose three values v0, v1 i v2 and calculate
P (xk−1, ..., x0) for each possible combination where xi ∈ {v0, v1, v2}, of which there are also 3k. In the
implementation we will therefore have a transformation F that converts a sequence of 3k coefficients to a
sequence of 3k calculated values.

Since the product of two polynomials has more coefficients than the original polynomials, if we wanted
to calculated the true product, we would have had to extend the polynomials to bigger powers, making
the new coefficients 0. However, to solve problem 2), that is precisely what we will not do. When doing
the inverse transformation F−1 which returns the coefficient form, we will purposefully demand that the
result has 3k coefficients. Additionally, for the values v0, v1 i v2 we will choose the third roots of unity
(both real and complex), that is the numbers 1, −1+

√
3i

2 and −1−
√

3i
2 , so that v3

0 = v3
1 = v3

2 = 1. The effect
of these two things is that the coefficients of larger powers in the resulting product (x3, x4, ...) will get

3 of 7

https://codeforces.com/blog/entry/71899
https://codeforces.com/blog/entry/96003


Croatian Open Competition in Informatics
Round 1, October 16th 2021 Editorial

added to the coefficients of the smaller powers - precisely with the smallest power that is the same modulo
3 (because of the choice of vi). Thus, the powers will reduce modulo 3 and we will get exactly the desired
3k coefficients of the ∗-convolution.

Let us illustrate this on an example with k = 2. For the polynomial we take

P (x1, x0) = a00x0
1x0

0 + a01x0
1x1

0 + a02x0
1x2

0

+a10x1
1x0

0 + a11x1
1x1

0 + a12x1
1x2

0

+a20x2
1x0

0 + a21x2
1x1

0 + a22x2
1x2

0,

which can also be written as

P (x1, x0) = Q0(x0) · x0
1 + Q1(x0) · x1

1 + Q2(x0) · x2
1,

where
Qi(x0) = ai0x0

0 + ai1x1
0 + ai2x2

0.

First, we will apply the transformation F on each of the polynomials Qi separately. Using the label
w = − 1

2 +
√

3
2 i, we have:

(ai0, ai1, ai2) 7→ (ai0 + ai1 + ai2, ai0 + wai1 + w2ai2, ai0 + w2ai1 + wai2)

In this way, the sequence of coefficients

(a00, a01, a02, a10, a11, a12, a20, a21, a22)

turns into a new list of coefficients, which we will label with

(a′00, a′01, a′02, a′10, a′11, a′12, a′20, a′21, a′22).

We would like to obtain a list that has the following values in order

P (1, 1), P (1, w), P (1, w2), P (w, 1), P (w, w), P (w, w2), P (w2, 1), P (w2, w), P (w2, w2).

What remains is to replace the triplets (a′0i, a′1i, a′2i) with new values, in the same manner as we did when
calculating the values for Qi.

For bigger values of k, the process is analogous. In each of the k iterations, we gradually transform the
coefficients in the described way, each time jumping by a larger power of 3.

The inverse transformation F−1 is almost identical to the original, having the formula

(a, b, c) 7→ 1
3(a + b + c, a + w2b + wc, a + wb + w2c).

It should be noted that in the implementation, there is no need to make calculations with complex
numbers, whose real and imaginary parts are stored with a floating point type. Instead, we can notice
that at each moment every number will be of the form a + bw, where a and b are whole numbers which fit
in long long int. When calculating it is useful to keep in mind that w3 = 1 and w2 = −1− w.

Task Volontiranje

Prepared by: Krešimir Nežmah
Necessary skills: longest increasing subsequence, greedy algorithms, amortized time complexity

We use ’LIS’ as a shorthand for a longest increasing subsequence.

The first subtask can be solved by finding every LIS, and then find via dynamic programming with
bitmasks a set of them which do not overlap.

4 of 7



Croatian Open Competition in Informatics
Round 1, October 16th 2021 Editorial

For the rest of the subtasks, some more insight into the structure of the longest increasing subsequences is
needed. The solution in short is the following: we can remove the subsequences one by one, each time
greedily building the lexicographically smallest LIS. A naive implementation of that would be to slow, so
it is necessary to do some backtracking and removing of certain elements for which we are sure that they
will not help with the solution, so that the time complexity gets reduced.

A more detailed description and proofs of the observations are given, but first we will mention a couple of
general properties of this type of configuration, which are common in these types of tasks.

For each index i (1 ≤ i ≤ n), let’s define LIS[i] as the length of the longest increasing subsequence
ending at index i. This can be calculated with the formula LIS[i] = 1 + max{LIS[j] : 1 ≤ j < i, pj < pi}
using standard algorithms for finding a LIS. Furthermore, let l denote the length of a LIS, i.e. l =
max1≤i≤n LIS[i]. Also, for a fixed positive integer k let’s define Sk to be the set of all indices i for which
LIS[i] = k. Two important observations are:

• Claim
For all positive integers k, if we look at the values corresponding to the indices of Sk, they will be
decreasing.
Proof
If there were a, b ∈ Sk such that a < b i pa < pb, the longest increasing subsequence ending at a
could be extended to b and then LIS[a] < LIS[b]. �

• Claim
For each LIS x1, x2, ..., xl (where x1 < x2 < ... < xl) it holds that LIS[xi] = i for all 1 ≤ i ≤ l. In
other words, if we look at a fixed index j, it will always find itself at the same position in every LIS
(precisely at position LIS[j]).
Proof
Just as in the previous claim, we conclude that LIS[x1] < ... < LIS[xl]. Noting that LIS[x1] = 1
and LIS[xl] = l, these l numbers must be exactly 1, 2, ..., l. �

The things mentioned so far can be visualized in the following way (see image bellow): the given
permutation can be interpreted as a set of points (i, pi) in coordinate plane, and increasing subsequences
can be thought of as path going through the points, moving ’up and to the right’. Having in mind the
claims mentioned above, the sets Sk come in layers, and a LIS (red arrows) pass through one point in
each layer.

Between every two neighbouring layers blue edges are drawn between pairs of points where an increasing
subsequence of the first point can be extended to the second point (those are actually pairs of points

5 of 7



Croatian Open Competition in Informatics
Round 1, October 16th 2021 Editorial

where the second points is ’up and to the right’ of the first point). Thus, a LIS is any path using the blue
edges which starts in the first layer and ends in the last layer. Also, for each point, all of its neighbours
form a segment of points in the next layer.

Now we will mention the claims specific to the problem.

Claim 1 :
Assume that in the optimal solution the number of LIS’s is equal to m, and that the indices of the i-th
LIS are denoted by xi,1, xi,2, ..., xi,l. Then, there exists an optimal solution such that for each j it holds
that x1,j < x2,j < ... < xm,j .
On the image this corresponds to the fact that it is possible to choose the red paths so that they do not
intersect.

Proof :

Let’s look at a situation where the paths intersect and let’s label the points as in the image. Since the
edges AA′ and BB′ intersect, the points A′ and B′ have to be in the intersection of the ’fields of vision’ of
the points A and B. Thus, instead of the current edges we can take the edges AB′ and BA′, untangling
the paths. Using a sequence of such untanglings, we can make it so that the paths do not intersect. �

Since there exists an optimal solution in which the paths do not intersect, the idea comes to mind of
trying to pick paths from left to right (it is possible to make a solution in the opposite direction) such
that we take the paths that are ’as left as possible’ so that we would have more room for the remaining
paths. The following claim shows that the right choice is in fact the lexicographically smallest LIS, i.e.
that it leaves the most room.

Claim 2 :
Assume that from each layer we have removed a prefix of points, so that only the remaining points are
allowed to be used when constructing a LIS. The lexicographically smallest LIS of the remaining points
will then be the smallest for each layer separately.

Proof
Assume not. Denote the lexicographically smallest LIS by P . By the assumption there exists a path Q
such that in the first layer it begins at the same point or later than P , but which finds itself earlier than
P in some other layer. The first place where this happens is actually a crossing, which by claim 1, we can
untangle, obtaining a lexicographically smaller path than P . �

A consequence of claim 2 is that each point that is to the left of the lexicographically smallest LIS (in any
layer) can never be used for building a LIS. Thus, the solution can be obtained if at every step we choose
the lexicographically smallest LIS and remove all of the points on or to the left of it. A solution that goes
through all of the remaining points for each step and finds the desired LIS solves the second subtask.

To solve the third subtask, the searching process should be sped up. Say we’re trying to build our current
LIS and that we are currently at node v (the LIS is built in order from smaller to larger values, and we
have so far built a prefix of the LIS). By the things mentioned, node v is the leftmost node in the current

6 of 7



Croatian Open Competition in Informatics
Round 1, October 16th 2021 Editorial

layer that has the possibility of being extended to a LIS. All of the nodes in the next layer which are to
the left of v can immediately be deleted, because if we can’t reach them now, we won’t be able to reach
them in the future. Then, if from v we cannot reach the leftmost node in the next layer (i.e. if that node
is bellow v), then no path from v can continue to the last layer. For that reason, we should remove node
v, and the new current vertex will become v’s predecessor, from which we repeat the process. Of course,
if it is possible to go from v to the leftmost node in the next layer, the path will continue through it.

After we make the division into layers, which can be done with time complexity O(n log n), the mentioned
searching procedure works in O(n), which is enough for the third subtask.

7 of 7


