
Croatian Open Competition in Informatics
Round 6, March 7th 2020 Editorial

Editorial

Tasks, test data and solutions were prepared by: Fabijan Bošnjak, Nikola Dmitrović, Karlo Franić, Marin
Kišić, Ivan Paljak i Stjepan Požgaj. Implementation examples are given in attached source code files.

Task: Datum

Suggested by: Karlo Franić
Necessary skills: palindrome check, ad-hoc

For the first subtask it was enough to take the first two characters of the date and increase that number
by 1 until we reach a palindrome.

For the second subtask we can use the same approach as for the first one, but we need to take additional
care when we enter a new month.

For the third subtask we can use the same approach as for the first two, but we need to take additional
care when we enter a new year.

In order to score all points it was important to note that the number of palindromic dates in the given
form is relatively small, 366 in total. You could simply find these dates and store them in an array. For
each date in the input you can traverse through all palindromic dates and output the smallest one that
comes after it.

The time complexity is O(NK), where K represents the number of palindromic dates. The task can also
be solved in O(N log K), but we will leave that solution as an exercise to the reader.

Task: Birmingham

Suggested by: Marin Kišić
Necessary skills: elementary graph theory, breadth first seach (BFS)

In order to score half of the points, we must first determine an array dist[a][b] which stores the shortest
distances between pairs of nodes. We can do that by starting BFS BFS from each node towards all other
nodes. After that, we can do a special BFS from starting nodes that expands in the following way: if we
are currently in node a with distance d, then we add all nodes to the queue which are not yet visited and
are distant from a by ≤ (d− 1) ·K. We can find these nodes by traversing dist[a].

To score all points it was enough to conclude that, if we know the distance from node x to some of
the starting nodes, then we can deduce the solution for that node (either using a formula or a simple
simulation). Distance from each node to the set of the starting nodes can be determined using BFS with
all starting nodes being initially emplaced in our queue.

1 od 4

https://en.wikipedia.org/wiki/Breadth-first_search


Croatian Open Competition in Informatics
Round 6, March 7th 2020 Editorial

Task: Konstrukcija

Suggested by: Stjepan Požgaj
Necessary skills: ad-hoc

We are asked to construct a graph with N nodes and M edges such that tns(1, N) = K, where tns(x, y) =∑
C∈Sx,y

sgn(C). Let [a, b > be a set of nodes x such that there is a path from a to x, there is a path
from x to b and x is different from b. We can remove the last element of each ordered array C ∈ Sx,y and
obtain another ordered array C ′ that begins with x, ends in some node from [x, y > and whose length is
smaller by one than the length of C, so sgn(C) = −sgn(C ′). Therefore tns(x, y) = −

∑
z∈[x,y> tns(x, z).

We will build our graph level-by-level. The first level will always contain a single node 1 and the last level
will contain a single node N . In the first two subtasks, all nodes (except N) in a certain level will have
directed edges towards all nodes in the next level. The general solution will be slightly modified.

The graph which solves the first subtask 1 ≤ K < 500 has three levels. The first level contains node 1, the
second level contains K + 1 nodes, and the last level contains node K + 3. For example, for K = 4 the
graph looks like the one depicted below.

In this example, using the recurrence relation for tns(1, x), we can see that tns(1, 1) = 1, tns(1, 2) = · · · =
tns(1, 6) = (−1) · 1, tns(1, 7) = (−1) · (1 + 5 · (−1)) = 4.

We will solve the second subtask with −300 < K ≤ −1 in a similar manner. For example, for K = −4 the
graph looks like the one depicted below.

By inspecting the solutions for the first two subtasks we can observe that, by adding M nodes in a new
level, we are multiplying the sum of all tns(1, x) values by −(M − 1). It is also clear from the recurrence
relation that tns(1, N) is equal to the sum of all tns(1, x) values, where 1 ≤ x < N , multiplied by −1. If
K has the form ±2i, by adding three nodes in a new level, the sum of tns(1, x) is multiplied with −2 so
we can obtain the value K up to its sign using 3 + (i − 1) · 9 nodes. If we get the wrong sign, we can
simply add 2 nodes in the next level to multiply the solution with −1.

All that is now left do determine is how to increase the absolute value of the current value by 1. Then
we can use multiplications by 2 and additions by 1 to perform a popular algorithm for transposing the

2 od 4



Croatian Open Competition in Informatics
Round 6, March 7th 2020 Editorial

number from binary to its decimal notation. If the current sum is negative, we can simply subtract 1 by
adding a new node to the current level that is connected with node 1. Similarly, if the sum is positive, we
can add two nodes to a new level that are connected to all from the previous level, thereby negating the
sum and subtracting 1 as described.

This algorithm constructs a graph for given K in less than 16 · log2(K) edges.

Task: Skandi

Suggested by: Fabijan Bošnjak and Ivan Paljak
Necessary skills: maximum bipartite matching, minimum vertex cover, König’s theorem

In order to score points on the first subtask, it was enough to note that, due to small number of ones, the
number of questions in our crossword puzzle is very small. It was enough to use brute force in order to
traverse each subset of those questions and assume that was the subset of questions that needed to be
answered. For each subset we checked whether the crossword puzzle was filled. The time complexity is
O(2QNM), where Q denotes the total number of questions.

The constraints of the second subtask will immediately put an experienced contestant to the right track.
One dimension of the matrix is very small and the problem immediately starts smelling like dynamic
programming with bitmasks. And that intuition is correct, we will traverse the matrix row-by-row and
store in our bitmask in which columns we have decided to answer vertical questions whose answers span
through the current row. Therefore, the state can be denoted with dp[row][mask] and it tells us what is
the minimal number of questions that need to be answered in order to fill an entire crossword puzzle if we
have filled all rows until row − 1 and we are currently at row row with mask storing active columns as
described. Further analysis of the transitions and the reconstruction are left as an exercise to the reader.
You can see the implementation of this solution in skandi_dp.cpp.

Sometimes it is useful to obtain a more formal description of the problem. In this case, that will naturally
lead us to the full solution. Let’s denote the horizontal questions with a1, a2, . . . , ap, and vertical questions
with b1, b2, . . . , bq. Let ai (or bj) be equal to 1 if we choose to answer that particular question in our
solution and 0 otherwise. Note that for each empty square x we need to choose to answer at least one
of exactly two questions which have answers that contain x. Therefore, for each empty square there are
exactly two questions ai and bj for which ai ∨ bj = 1 must hold.

Let’s model this with a bipartite graph in which on one side we have nodes that represent horizontal
questions, and on other side we have nodes that represent vertical questions. Let’s connect two nodes that
represent questions ai and bj with an edge if there exists an empty square for which ai ∨ bj = 1 must
hold. Now, we want to determine the smallest subset of nodes such that each edge is incident to at least
one node from that subset. This is a famous problem called minimum vertex cover. Since the graph is
bipartite, we can use König’s theorem and solve the problem in polynomial complexity.

3 od 4

https://en.wikipedia.org/wiki/Vertex_cover
https://en.wikipedia.org/wiki/K%C5%91nig%27s_theorem_(graph_theory)


Croatian Open Competition in Informatics
Round 6, March 7th 2020 Editorial

Task: Trener

Suggested by: Karlo Franić
Necessary skills: graph theory, dynamic programming

For the first subtask you could have checked each possibility. The complexity is O(KN ).

For the next two subtasks it was necessary to build a directed acyclic graph (DAG) and count the number
of paths from nodes on the first level to the nodes on the last level. This can be done using dynamic
programming and we leave it as an exercise to the reader. Let’s describe what kind of DAG will be built.

On each of the N levels we will have a node for each distinct surname with length equal to that level.
The value of that node is equal to the number of surnames it represents. The edges are built naturally –
from nodes on level i towards nodes on level i + 1. Edge from node A to node B exists if surname in node
A is different in exactly one letter from surname in node B. Depending on how efficient you have built
this DAG, you could have scored only the second subtask or the full score. For additional details, check
out the official implementation.

4 od 4


