
Croatian Open Competition in Informatics
Round 5, February 8th 2020 Editorial

Editorial

Tasks, test data and solutions were prepared by: Nikola Dmitrović, Karlo Franić, Gabrijel Jambrošić,
Marin Kišić, Daniel Paleka, Ivan Paljak and Paula Vidas. Implementation examples are given in attached
source code files.

Task: Emacs

Suggested by: Paula Vidas
Necessary skills: implementation

The number of rectangles in the image is equal to the number of upper-left corners of rectangles in the
image. Cell (i, j) is an upper-left corner of some rectangle if that cell contains the character ’*’ while
cells (i− 1, j) and (i, j − 1) (if they exist) contain the character ’.’.

Alternatively, we can use BFS to find the number of connected components in four general directions
which contain the character ’*’.

Task: Političari

Suggested by: Ivan Paljak
Necessary skills: cycle detection

It was possible to score 50% (35) of total points on this task simply by implementing what was described in
the task statement. In other words, you should have correctly implemented the rules by which politicians
blame each other until we reach the K-th show. The time complexity of this solution is O(K), and the
implementation details can be seen in politicari_brute.cpp.

To score all points on this task it was necessary to observe that the blaming process is cyclical. Since the
next guest on a talk show solely depends on the previous guest and the person who blamed the previous
guest, we can conclude that there are at most O(N2) different shows (states). We consider two shows to
be the same if they have the same guest that was blamed by the same politician in the previous show.
Otherwise, the shows are considered different.

Since the total number of different shows is considerably less than the maximum episode in which we are
interested in, we can simulate the process until we reach the show we have seen before (already visited
state). At that moment, assuming that we keep track of some key items that have happened, we can use
the power of math to calculate who will be the guest of the K-th show.

Let’s assume we have realized that the i-th show will be the same as a (some prior) j-th show. In that
case, we have just entered a cycle of length (i− j) and can conclude that the guest which appeared in
(j + ((K − j)%(i− j)))-th show will also appear in the K-th show. Here, we use the % character to denote
the modulo operator.

Time complexity of described solution is O(N2).

1 od 4

Croatian Open Competition in Informatics
Round 5, February 8th 2020 Editorial

Task: Matching

Suggested by: Paula Vidas and Daniel Paleka
Necessary skills: segment tree

If we connect the points that share one coordinate, the points will be divided into cycles and paths. With
paths it is clear which points should be connected with line segments. If there is a path with an odd
number of points, we immediately conclude that the answer is "NE". For cycles we must determine whether
we will draw all horizontal or all vertical lines (in the rest of the editorial we call this orientation).

There are at most N
4 cycles, so in a subtask where (N ≤ 40) we can try all 2broj ciklusa possible cycle

orientations and check if there is one where line segments don’t intersect.

The main idea is as follows: at the beginning the paths determine some line segments that must be drawn.
These line segments determine the orientations of those cycles that they intersect, which determine the
orientations of some other cycles, etc. If at some point during this process we draw a line segment that
intersects some line segment that is already drawn or we conclude that both cycle orientations are invalid,
then the answer is "NE".

For a subtask where N ≤ 2000, we can do that in O(N2):

First, we find all paths and cycles and place all line segments from paths into a FIFO queue of the lines
that need to be drawn. While the queue is not empty, we pop a line segment from it and check whether it
intersects any of the previously drawn line segments (then the answer is "NE"). Then we traverse over
not-yet-oriented cycles and orient those cycles which intersect with the line segment we are about to draw
(orientation of the cycle needs to be different than the orientation of the line segment). In the end we
might have some leftover cycles which we can orient in the same orientation (doesn’t matter which one).

For the final subtask where N ≤ 105, we need to check those line segment intersections more efficiently.
We will use a segment tree to devise a data structure which supports the following operations:

• add a line segment (x1, y) – (x2, y)

• remove a previously added line segment (x1, y) – (x2, y)

• determine for some x and y1 what is the smallest y2 ≥ y1 such that there exists a line segment with
y coordinate equal to y2 which contains the point (x, y2) (or determine that no such y2 exists)

In each node of the segment tree we will store a set of all y coordinates whose x coordinates are in an
interval for which that node is responsible. The first two operations boil down to standard addition/deletion
of y to corresponding nodes. To answer the third operation, we will find such y2 for each node responsible
for x (e.g. by using lower_bound in std::set) and return minimal such value. The complexity of all
three operations is O(log2 N). For implementation details, check the official solution.

Line segment which intersects the line segment (x, y1) – (x, y2) exists if the answer to the third query for
x and y1 is less than or equal to y2.

We will use two such data structures – one for horizontal and one for vertical line segments – in which we
will store the line segments of not-yet-oriented cycles and two additional data structures to store already
drawn line segments. We leave out the rest of the details as an exercise to the reader.

2 od 4

Croatian Open Competition in Informatics
Round 5, February 8th 2020 Editorial

Task: Putovanje

Suggested by: Gabrijel Jambrošić and Marin Kišić
Necessary skills: lca, small-to-large

Note that we really care about the number of times we need to traverse each of the roads. Once we know
that, it is pretty easy to decide whether we will buy multiple single-pass tickets or a single multi-pass
ticket.

In the first subtask, it was enough to use an algorithm like BFS or DFS to find a path between X and
X + 1 while increasing the counter of traversals for each edge.

In the second subtask our tree is actually a chain. Let’s think about that chain as an array. Let’s also
keep around another array called dp. Now, for every pair X and X + 1 we can increase dp[min(pos[X],
pos[X+1])] by 1 and decrease dp[max(pos[X], pos[X+1])] by 1 where pos[x] denotes the position of
node x in our chain. After we have done this for all neighbouring pairs, we can go over the dp array and
add its elements into some variable cnt. Note that in each moment of this traversal that variable holds
the number of times we have traversed the corresponding edge in a chain.

To score all points we will slightly modify this algorithm to make it work on a tree. Let’s root the tree in
an arbitrary node. Let L be the lowest common ancestor of X and (X + 1). Let’s now increase dp[X] by
1, increase dp[X+1] by 1 and decrease dp[L] by 2. Now we can simply find out the number of traversals
of each road by calculating the sum of dp values in a subtree of that road.

This solution is implemented in putovanje_lca.cpp.

There is an alternative solution of the same time complexity which uses the so-called small-to-large trick.
That solution is implemented in putovanje_stl.cpp. You can read about a very similar idea on this link.

Task: Zapina

Suggested by: Marin Kišić and Paula Vidas
Necessary skills: dynamic programming, counting

The first subtask can be solved by simply checking if there is at least one happy programmer for each
possible assignment of tasks. There are NN possible task assignments in total.

The second subtask can be solved using the inclusion-exclusion principle. If with a(S), where S ⊆
{1, 2, . . . , N}, denotes the number of task assignments in which all programmers from set S are happy,
then the number of good assignments is equal to

∑
S⊆{1,2,...,N}

(−1)|S|+1a(S).

Let S = {s1, s2, . . . , sk}. If s1 + s2 + · · ·+ sk > N then obviously a(S) = 0. Otherwise, it holds

a(S) =
(

N

s1

)(
N − s1

s2

)
· · ·
(

N − (s1 + s2 + · · · sk−1)
sk

)
(N − k)N−(s1+s2+···+sk).

Binomial coefficients can be precomputed using the well-known relation
(

n
k

)
=
(

n−1
k−1
)

+
(

n−1
k

)
in time

complexity O(N2).

The total time complexity is O(N2N).

Finally, the third subtask can be solved using dynamic programming. Let dp(n, k) be the number of
assignments of k tasks to n programmers among which there is at least one happy programmer. There
are two possibilities – we can give the n-th programmer exactly n tasks (and make him happy), or we

3 od 4

https://codeforces.com/blog/entry/72017#comment-563190

Croatian Open Competition in Informatics
Round 5, February 8th 2020 Editorial

won’t. In the first case, if k ≥ n, the number of ways equals

(
k

n

)
(n− 1)(k−n),

and in the other it equals

∑
0≤i≤k,i 6=n

(
k

i

)
dp(n− 1, k − i).

The total time complexity is O(N3).

4 od 4

