
Croatian Open Competition in Informatics
Round 4, January 14th 2020 Editorial

Editorial

Tasks, test data and solutions were prepared by: Fabijan Bošnjak, Nikola Dmitrović, Karlo Franić, Marin
Kišić, Josip Klepec, Daniel Paleka, Ivan Paljak and Paula Vidas. Implementation examples are given in
attached source code files.

Task: Pod starim krovovima

Suggested by: Nikola Dmitrović and Marin Kišić
Necessary skills: greedy algorithm

The solution is based on an idea that we should start filling the largest (in terms of volume) glass as much
as possible. If we have filled the largest glass, we should move to the next one, and so on until there are
no glasses left. In that way we will certainly end up with as much empty glasses as possible.

The time complexity of this greedy algorithm is O(N log N) due to sort. Notice that the constraints were
much lower in this task so that less efficient sorting algorithms or correct simulations get all points.

Task: Spiderman

Suggested by: Ivan Paljak
Necessary skills: math, complexity analysis

Let’s solve the easier versions of the task first that were given in the Scoring section.

The first partial score worth a total of 14 points could have been solved by a simple simulation. In other
words, we could have used two nested loops to fix each pair of skyscrapers and check whether Peter can
jump form one to the other. The time complexity of this solution is O(N2).

For additional 14 points you should have used the fact that there are mere 2000 different heights among all
skyscrapers. We can store for each of these heights how many skyscrapers have it and now the task boils
down to a solution very similar to the one described above. Instead of visiting each pair of skyscrapers, we
will visit each pair of heights and store the solution for each height. The time complexity of this solution
is O(M2) where M represents the number of different heights among the skyscrapers.

In test cases worth additional 14 points, you could have assumed that K = 0. In other words, from
skyscraper of height hi it was possible to jump on a skyscraper of height hj if hj is a divisor of hi. Finding
all divisors of a certain number x can relatively easy be done in O(

√
x). Therefore, we have an algorithm

of time complexity O(N√maxH) which should score these 14 points. If you are not familiar with a
popular algorithm that finds the all divisors of a given number, feel free to visit this link.

Solving the entire problem could have been done via a slight modification of the previous algorithm
(hint: observe all divisors of hi − k), but here we will explain a slightly different and faster algorithm.
Let’s ask ourselves: „From which skyscrapers can we jump on a skyscraper that is hi meters high?”. The
answer is, naturally, from skyscrapers of height K or K + hi or K + 2hi or K + 3hi or Let maxH

denote the height of the highest possible skyscraper, then we can jump on skyscraper of height hi from
∼ maxH

hi
different heights. The question presents itself, can we traverse over all candidate heights for each

skyscraper within the given time limit? Let’s assume the worst case in which all heights of skyscrapers
are different (otherwise we just use the same trick from second subtask). Therefore, the skyscrapers
have heights 1, 2, . . . , maxH . For the first skyscraper we have ∼ maxH

1 candidates to traverse, for the
second one we have ∼ maxH

2 candidates to traverse, . . . and for the last one we have ∼ maxH

maxH
candidates

to traverse. Therefore, the total number of candidates to traverse is ∼ maxH lg maxH which is small
enough to pass al test cases. If you are struggling with the last observation, we suggest you familiarize
yourself with the complexity analysis of a famous algorithm called Sieve of Eratosthenes or simply check
out this document.

1 od 4

https://www.math.uh.edu/~minru/web/divis2.html
https://www.cs.umd.edu/class/spring2016/cmsc351-0101/harmonic.pdf

Croatian Open Competition in Informatics
Round 4, January 14th 2020 Editorial

Task: Holding

Suggested by: Fabijan Bošnjak and Marin Kišić
Necessary skills: dynamic programming, memory optimizations

The solution of the first subtask is based on dynamic programming where the state is a bitmask. We
leave the rest of the details as a practice to the reader.

In the second subtask it is known that R = N , which means that we can swap numbers on positions L,
L + 1, . . . , R only with numbers on positions from 1 to L− 1 (the rest of the solution assumes that the
word interval refers to the agreed interval L, L + 1, . . . , R). The first important observation is that we will
never change the position of a certain number more than once. The second important observation, and
much less obvious than the first, is that we only care about which elements were chosen to be swapped
within the interval and which were chosen to be swapped outside the interval. Regardless of the way in
which we have swapped these numbers, their total cost will remain invariant. For example, if we decided
to swap positions i and j from within the interval with positions k and l that are outside the interval, it
doesn’t matter whether we have changed i with k and j with l or i with l and j with k. We leave the
formal proof of this claim as an exercise to the reader.

Now it is obvious that the only important thing left is to decide which elements should be chosen from
inside and which elements should be chosen from outside of the interval and that the number of chosen
elements from inside equals the number of chosen elements outside of interval. We can achieve that using
dp whose arguments are the current position outside the interval, current position inside the interval and
the total amount of money we have spent thus far. The dp function returns the maximum decrease in
sum of elements in our interval. The initial state of dp is dp(1, L, 0) and the state where we will find our
solution is dp(L− 1, R, K).

dp(pozout, pozin, spent) = max
{

dp(pozout − 1, pozin, spent), dp(pozout, pozin − 1, spent),

dp(pozout − 1, pozin − 1, spent− (pozin − pozout)) + A[pozin]−A[pozout]
}

(1)

The first dp transition tells us not to take an element on position pozout, the second transition tells us not
to take an element on position pozin, while the third transition tells us to take both elements and swap
them, thus spending pozin − pozout kunas.

The complexity of this algorithm is O(N2 ·K).

This algorithm is therefore fast enough for the whole solution, but doesn’t include the swaps from the
right side of the interval because R = N . Suppose that the optimal solution takes X elements left of the
interval, Y elements right of the interval and X + Y elements from inside the interval. It is obvious that,
if we sort positions of elements we took from within the interval, first X elements will be swapped with
the X chosen elements on the left side and next Y elements will be swapped with the Y chosen elements
on the right side. This leads us to a conclusion that there is a line between positions within the interval
which determines that all elements from the interval left of that line will be swapped with chosen elements

2 od 4

Croatian Open Competition in Informatics
Round 4, January 14th 2020 Editorial

left of the interval, and vice versa for the right side. Since we don’t know where that line might lie and
since we don’t actually care how many swaps are made on each side of an interval, we can to place that
line on each position within the interval. We can do that with the following lines of code:

for i in range (L - 1, R+1):
for j in range (0, K + 1):

sol = max(sol, dpL(L - 1, i, j) + dpR(R + 1, i + 1, K - j))

What are dpL and dpR? dpL is the same dp from the last subtask and dpR is completely identical to it
but is being done from the other side. The complexity of each dp is O(N2 ·K) and the complexity of
merging their solutions is O(N ·K). Therefore, the total complexity of the algorithm is O(N2 ·K).

Why can’t you score all the points with that solution then? Because tridimensional array of the form int
dp[N][N][K] takes up too much memory for N = 100, but it fits for N = 50. Therefore, we still need to
optimize our memory consumption. There are multiple ways to achieve that, but perhaps the easiest is to
note that, in the worst case for any N , L and R, the maximum amount of money Ivica needs to perform
all swaps is going to be bounded by N2

4 . Luckily, arrays of the form int dp[N][N][N*N/4] fit into the
given memory limit of 256 MiB. There is another optimization which swaps the dimension N with a
smaller constant, you can check the implementation of that optimization in the attached source code.

Task: Klasika

Suggested by: Ivan Paljak
Necessary skills: dfs tree traversal, trie

The first two subtasks were solvable by more or less efficient attempts to simulate the process described in
the task statement. We will leave further analysis of those solutions as exercises to the reader.

In the third subtask you were supposed to answer each Query with the longest path in a tree which starts
on given node a. Note that the definition of path length is a bit peculiar, i.e. instead of summing up the
edge weights, we are asked to xor them. Let’s denote the distance between nodes x and y with d(x, y).
Note that d(x, y) = d(1, x) xor d(1, y) holds for each pair of nodes. We can use this property and keep
around the distance from the root to each of the nodes while executing the queries. Finding the greatest
distance from a given node a now boils down to finding another value d(1, b) from the set of remembered
values which when xor-ed with d(1, a) gives a maximal value. This is a well-known problem which can be
easily solved using the trie data structure. If you are not familiar with the problem, we suggest you try to
find the solution by yourself. If you don’t succeed, check out this link.

The solution which scores all points is conceptually very similar to the one described above. The only
problem we are having is that, when we traverse the trie, we don’t know whether that part of the trie
holds any value that is related to a node that is in a subtree of node b. Imagine that we know the values
discovery and finish for each node which represent the moments when a dfs traversal function enters
and leaves that particular node. Suppose that in each trie node we store a set of discovery times of all
tree nodes whose distances from the root live in that subtree of our trie. Then we could simply make
sure never to enter a trie node that doesn’t hold a value related to subtree of node b while processing the
Query. More precisely, we can traverse a node in a trie if its set of discovery times contains a value that is
greater or equal to discovery[b] and less or equal to finish[b].

Turns out this is relatively easy to achieve. First we will apply all Add queries (offline) and use a single dfs
traversal to find discovery and finish values for each node. Then we will traverse through all queries
once more and perform the algorithm described above. When adding a new element to the trie, we
will simply append the corresponding discovery value to each of the visited trie nodes. Finally, when
answering a query we will make sure we don’t visit trie nodes that don’t contain values related to the
subtree of node b.

3 od 4

https://www.hackerearth.com/practice/notes/lalitkundu95/tutorial-on-trie-and-example-problems/

Croatian Open Competition in Informatics
Round 4, January 14th 2020 Editorial

Task: Nivelle

Suggested by: Daniel Paleka
Necessary skills: sliding window technique, two pointers

We can implement a solution of time complexity O(N2) which for every substring calculates the number
of different letters in it. If we use the so-called sliding window technique, we need to keep track how
many times each letter appears and note each time when a new letter starts or stops appearing. For
implementation details, check the attached (slower) source code.

Note that the numerator of the expression we want to minimize, i.e. the number of different characters in
a substring, can either be 1, 2, . . . , 26. Therefore, it is enough to fix its value in every possible way and
determine the largest possible substring which has exactly that many different characters. Now we have
26 values to compare and pick the smallest one.

A simple implementation calculates for each starting character the longest substring which contains exactly
K different characters. If we calculate for each character and each position the first next appearance of
that character, for each starting character we can quickly check ≤ 26 strings which go to the next new
character.

4 od 4

