

COCI 2017/2018
Round #3, November 25th, 2017

Tasks

Task Time limit Memory limit Score

Aron 1 s 64 MB 50

Programiranje 3 s 64 MB 80

Retro 0.5 s 512 MB 100

Portal 1 s 256 MB 120

Dojave 4 s 256 MB 140

Sažetak 0.5 s 64 MB 160

Total 650

COCI 2016/2017
Round #3, November 25th, 2017

Task Aron
1 s / 32 MB / 50 points

The holiday season is near! Aron wants to get gifts for his friends in Zagreb, so in order to
get them on time, he visited a famous toy store in London. After picking out the gifts, he went
to the register and discovered that there were already N people in line. Luckily, he noticed
that there were groups of people standing in line, in addition to individual customers. A group
of people consists of a customer and their friends waiting for them to complete the purchase.
The moment when the customer is done, they and their friends leave the line.
The people considered a group are standing one behind the other and are wearing shirts of
matching colour. Two adjacent groups, adjacent individuals or adjacent individual and a
group, will never be wearing shirts of the same colour.

Write a program that will, given the data on the people standing in line, output which person
in line Aron is.

INPUT

The first line of input contains the positive integer N (1 ≤ N ≤ 25) from the task.
Each of the following N lines contains a single character, an uppercase letter of the English
alphabet that represents the shirt colour of the ith person in line.

OUTPUT

You must output the required number from the task.

SAMPLE TESTS

input input input

3

C

Z

P

6

C

C

P

C

Z

Z

6

B

B

B

B

B

B

output output output

4 5 2

Clarification of the second test case:
First in line is the group consisting of two people in red shirts. Second in line is an individual in the
blue shirt, third in line is an individual in the red shirt, and fourth in line is a group in green shirts. This
makes Aron fifth in line.

COCI 2017/2018
Round #3, November 25th, 2017

Task Programiranje
3 s / 64 MB / 80 points

Little Leticija is preparing for a programming exam. Even though she has solved a lot of
tasks, there’s one still left unsolved, so she is asking you for help. You are given the word S
and Q queries. In each query, you are given positive integers A, B, C and D. Let’s say that
word X consists of letters between positions A and B in word S, and word Y from letters
between positions C and D in word S. For each query, you must answer if it is possible to
somehow rearrange the letters in word Y and obtain word X.

INPUT

The first line of input contains the word S (1 ≤ |S| ≤ 50 000). |S| denotes the number of
characters in word S, which consists of lowercase letters of the English alphabet. The
second line of input contains the positive integer Q (1 ≤ Q ≤ 50 000).
Each of the following Q lines contains four integers A, B, C i D (1 ≤ A ≤ B ≤ |S| and 1 ≤ C ≤ D
≤ |S|) from the task.

OUTPUT

For each query, output “DA” (Croatian for yes) if it is possible, and “NE” (Croatian for no) if it
is not.

SCORING

In test cases worth 50% of total points, it will hold: 1 ≤ |S| ≤ 1000 and 1 ≤ Q ≤ 1000.

SAMPLE TESTS

input input input

kileanimal

2

2 2 7 7
1 4 6 7

abababba

2

3 5 1 3
1 2 7 8

vodevovode

2

5 8 3 6
2 5 3 6

output output output

DA

NE

DA

DA

NE

DA

Clarification of the third test case:
In the first query, X=”vovo”, and Y=”devo”. In the second query, X=”odev”, and Y=”devo”.

COCI 2017/2018
Round #3, November 25th, 2017

Task Retro
0.5 s / 512 MB / 100 points

Little Mirko got a video game console for Christmas. It wasn’t a Playstation 4 or an Xbox
one, but Atari 2600, and it came with one free game. The protagonist of the game is
standing on the bottom of the screen, and there are various objects dispersed on the rest of
the screen, falling towards the bottom.

More precisely, the screen can be represented as a grid of RxS pixels arranged in R rows
and S columns. The protagonist takes up one pixel of the lowest line and is marked with ‘M’.
The rest of the pixels are marked with some of the characters: ‘.’ (empty space), ‘*’ (bomb),
‘(‘ (open bracket) or ‘)’ (closed bracket).

The protagonist can move one pixel to the left or to the right in a single move, but doesn’t
need to, whereas the rest of the objects simultaneously move one pixel down (possibly out
of the screen). When the protagonist finds himself at the same position as one of the
brackets, we say that he picked up that bracket and added it at the end of his array of
acquired brackets. The protagonist’s goal is to acquire the longest possible valid bracket
expression.

A valid bracket expression is defined inductively in the following way:

● “()” is a valid expression
● If a is a valid expression, then “(a)” is a valid expression as well
● If a and b are valid expressions, then “ab” is a valid expression as well

The game ends when the protagonist finds himself at the same position as the bomb, or
when all the objects fall out of the screen.

INPUT

The first line of input contains the positive integers R and S (1 ≤ R, S ≤ 300) that represent
the dimensions of the screen.
Each of the following R lines contains S characters ‘M’, ‘.’, ‘*’, ‘(‘ or ‘)’ that represent the initial
state of the screen.
Test data will be such that there will always exist at least one valid bracket expression that is
possible to acquire.

OUTPUT

In the first line, you must output the length of the longest valid bracket expression that Mirko
can acquire.
In the second line, output that expression. If there are multiple longest valid expressions,
output the lexicographically smallest one.

COCI 2017/2018
Round #3, November 25th, 2017

Task Retro
0.5 s / 512 MB / 100 points

SCORING

In test cases worth 25% of total points, it will hold 1 ≤ R ≤ 15.
In test cases worth 50% of total points, it will hold 1 ≤ R ≤ 100.

If you output the correct length, but the wrong expression, you will be awarded 40% of points
for that test case. In any case, in order to score points, your output must consist of two
non-empty lines.

SAMPLE TESTS

input input input

5 4
..).

.)(.

(.)*

(.

..M.

6 3
)(.

*..

(**

)()

().

M..

6 3
((.

*..

(**

)()

().

M..

output output output

4

(())

4

()()

2

()

Clarification of the first test case: The protagonist’s moves are: left, left, right right.
Clarification of the second test case: The protagonist’s moves are: stay still, stay still, stay still,
right, left.
Clarification of the third test case: The protagonist’s moves are: stay still, stay still, right.

COCI 2016/2017
Round #3, November 25th, 2017

Task Portal
1 s / 256 MB / 120 points

The protagonist of this task, Chell, must solve a new puzzle GLaDOS has come up with.
Chell is in a room whose layout that can be represented as a matrix of dimensions N rows
and M columns. Each field can be one of the following:

● Obstructed field - there is a wall in it (denoted as ‘#’),
● The field where Chell is initially (denoted as ‘C’),
● The field where Chell must get to in order to solve the puzzle (denoted as ‘F’), or
● An empty field (denoted as ‘.’).

Chell is carrying a so-called portal gun, a gun with which you can create portals in the walls.
In each move, she can do one of the following:

● Move to an adjacent field using one move up, down, left or right (she cannot move to
the field with a wall in it). This move lasts one unit of time.

● Create a portal in the wall by turning towards a wall, not necessarily an adjacent one,
in the direction up, down, left or right and shooting. The portal will be created only on
the side of the wall it was hit from. In each moment, at most two portals can be
active. If a new portal is being created in the moment when two portals are already
active, the one that was created earlier will disappear. It is not possible to create a
new portal at the position of another existing portal. This move lasts a negligible
amount of time, i.e. zero amounts of time.

● If she’s at a field that is adjacent to a wall and there’s a portal on her side of the wall,
she can step into the portal and exit to a non-obstructed field with another portal. This
move is possible if there are two active portals and lasts one unit of time.

Chell wants to know the minimal amount of time it takes for her to solve the puzzle, i.e. to
reach the field denoted as ‘F’.

Please note: The room will always have walls on the sides, and letters ‘C’ and ‘F’ will appear
only once in the matrix.

INPUT

The first line of input contains the positive integers N and M (4 ≤ N, M ≤ 500), the numbers
from the task.
Each of the following N lines contains M characters that describe the layout of the room.

OUTPUT

You must output the minimal amount of time it takes to solve the puzzle, or “nemoguce”
(without quotation marks, Croatian for impossible) if it is not possible to solve it.

SCORING

In test cases worth 50% of total points, it will hold 4 ≤ N, M ≤ 15.

SAMPLE TESTS

COCI 2016/2017
Round #3, November 25th, 2017

Task Portal
1 s / 256 MB / 120 points

input input input

4 4

#.F#

#C.#

6 8
########

#.##..F#

#C.##..#

#..#...#

#.....##

########

4 5

#C#.#

###F#

output output output

2 4 nemoguce

Clarification of the second test case:
The puzzle can be solved in 8 moves, illustrated in the pictures below.
In the first move, we turn towards the left wall, shoot and create a portal that appears on the wall in
the 3rd row and 1st column (coordinates (3,1)) from the right side.
In the second move, we create a portal from the upper side of the wall at coordinates (6,2).
In the third move, we step into the portal at coordinates (3,1) and exit at coordinates (5,2) - a
non-obstructed field with the second portal.
In the fourth move, we turn right and create a portal from the left side of the wall at coordinates (5,7).
Since there are already two portals, the one at field (3,1) disappears.
In the fifth move, we step into the portal at coordinates (6,2) and exit at coordinates (5,6) with the
second portal.
In the sixth move, we create a new portal from the lower side of the wall at coordinates (1,6), making
the portal at coordinates (6,2) disappear.
In the seventh move, we step into the portal at coordinates (5,7) and exit at coordinates (2,6).
Finally, in the eighth move, we move one place to the right to end the game.
The portal creation in moves 1, 2, 4 and 6 lasts zero amounts of time, whereas the rest of the move
last one unit of time, so the total time needed to solve the puzzle is 4 units of time.

Move 1

Move 2

Move 3

Move 4

Move 5

Move 6

Move 7

Move 8

COCI 2017/2018
Round #3, November 25th, 2017

Task Dojave
4 s / 256 MB / 140 points

The biggest event of the year ended tragically for Croatian teams. The most influential
theoretician of CERC of all time, the founder of the popular page CERC Tips, and in his free
time an outstanding bass player, in his most recent performance failed to get his team to the
finals.

In order to get over his existential troubles, our subject is spending time playing games of
chance. He is especially interested in the following game:

You are given a positive integer M. Our protagonist sees in front of him a permutation of an
array of numbers 0, 1, 2, ..., 2M - 1.
The computer chooses a nonempty contiguous subsequence of the given permutation,
which it then lights up over a capital city of one of the countries in Southeastern Europe.
Our confidant, after fighting off tears caused by memories of old times, must choose two
distinct elements of the permutation and swap their places. Our man of the hour wins if and
only if the bitwise XOR of the numbers in the lit up subsequence after the substitution is
precisely 2M - 1.

Our hero wants to know the number of contiguous subsequences the computer can light
up so that he can win.

Help our hero overcome his (id)entity crisis so our favourite page can be fully active again.

INPUT

The first line of input contains the integer M (1 ≤ M ≤ 20),
The following line contains 2M space-separated numbers that make up a permutation of the
array 0, 1, 2, ..., 2M - 1.

OUTPUT

You must output the total number of contiguous subsequences that a computer can light up
so our hero can win.

SCORING

In test cases worth 50% of total points, it will hold 1 ≤ M ≤ 14.

COCI 2017/2018
Round #3, November 25th, 2017

Task Dojave
4 s / 256 MB / 140 points

SAMPLE TESTS

input input input

2

0 1 2 3

3

3 7 0 4 6 1 5 2

4

13 0 15 12 4 8 7 3
11 14 6 10 1 5 9 2

output output output

9

33

133

Clarification of the test cases:
In the first test case, if the computer chooses the subsequence [1 2 3], our hero can replace the
numbers 0 and 3. In this case, he can actually win for every chosen contiguous subsequence, except
the entire array.

In the second test case, if the computer chooses the entire array [3 7 0 4 6 1 5 2] as the lit up
subsequence, our hero can’t change the XOR of the subsequence (which is 0), no matter which two
elements are swapped.

COCI 2017/2018
Round #3, November 25th, 2017

Task Sažetak
0.5 s / 64 MB / 160 points

An unknown array x consists of N integers. The K-summary of that array is obtained by
dividing the array into segments of length K and summing up the elements in each segment.
If N is not divisible by K, the last segment of the division will have less than K elements.

In other words, the K-summary is an array where the elements are, respectively: (x[1] + … +
x[K]), (x[K+1] + … + x[2K]), and so on, where the last sum that contains x[N] can have less
than K summands. For example, the 5-summary of an array of 13 elements has three
elements (sum of elements 1.-5., sum of elements 6.-10., sum of elements 11.-13.).

It is clear that we cannot reconstruct the elements of the original array from the K-summary,
but that might be possible if we knew several K-summaries for different Ks. Write a program
that will, given length N and set K1, K2, …, KM, predict how many elements of the original
array we would be able to uniquely determine if we knew all the Ki-summaries of the array.
(It is not difficult to show that the number of reconstructed elements is independent of the
content of the summaries.)

INPUT

The first line contains the integers N and M (3 <= N <= 109, 1 <= M <= 10), the array length
and the number of K-summaries.
The second line contains distinct integers K1, K2, …, KM (2 <= Ki < N) from the task.

OUTPUT

You must output the required number of reconstructed elements.

SCORING

In test cases worth 40% of total points, it will hold N <= 5 000 000.

SAMPLE TESTS

input input input

3 1
2

6 2
2 3

123456789 3
5 6 9

output output output

1

2

10973937

Clarification of the first example: We can determine one element: x[3].
Clarification of the second example: We can determine x[3] and x[4].

