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Task Košnja Author: Stjepan Požgaj 

 
Let N and M denote the number of rows and columns of the matrix that represent the lawn,                  
respectively. 
 
Let’s assume that N ≤ M. One of the optimal ways for Mirko to visit each field while making                   
the minimal number of turns is that he starts from the upper left field facing right, visits the                  
entire first row, goes to the second row, turns right, visits the entire second row, goes to the                  
third row, and so on. 
The described way takes exactly 2⋅(N - 1) turns. 
 
In the case when M ≤ N, he needs to visit the fields in the same way, but now he needs to                      
visit the columns in order. This takes exactly 2⋅(M - 1) turns. 
Therefore, the solution to the problem is 2 ⋅ min(N - 1, M - 1). 
 
The proof that the described way is indeed the optimal way is left as an exercise to the                  
reader. 
 
Solution (written in Python 3.x): 
 
k = int(input()) 

for i in range(k): 

    n, m = map(int, input().split()) 

    print(2 * min(n - 1, m - 1)) 

 
 
Necessary skills: variable assignment 
 
Category: ad-hoc 
 
 
Task Zigzag Author: Nikola Dmitrović  

 
For each given letter, we must find a word from the list that starts with that letter. That word                   
must be used the least amount of times. This algorithm is clear from the task. Given the                 
constraints for the input data, it is necessary to be careful with the solution implementation,               
since the naive solution has a problem with the time limit. 
 
A helpful trick is to, for each letter, sort the words starting with that letter, and iterate over                  
them in a circular manner using a pointer. It is obvious that the first chosen word will be the                   
least used one, next time we will choose the second word, and when we reach the final                 
words, we will again return to the first word. 
 



You can find two proposed implementations (the real one and the naive one for 60% of total                 
points) in the official solutions. 
 
Necessary skills: list (dictionary), sorting algorithm 
 
Category: ad hoc 
 
 
Task Doktor Author: Daniel Paleka  

 
Let the value of the contiguous subsequence (from now on, just subsequence) be equal to               
the difference between the number of fixed points created by rotating that subsequence and              
the number of fixed points that disappear by rotating that subsequence. It is clear that we                
want to choose the subsequence of the maximal possible value. 
 
We can see that a card with the number x that is not a fixed point becomes a fixed point by                     
rotating a subsequence only if the center of the subsequence (the middle member if the               
subsequence is of odd length, and the point between two middle members if the              
subsequence is of even length) is equidistant to that card and the card in the xth index or, in                   
other words, the position where the card with the number x should be. 
If the previous condition is met, a card will become a fixed point if and only if it is contained                    
in the subsequence. 
 
Using the observations above, we can try to design a solution: for each possible center of                
the subsequence, iterate over all subsequences with that center from the smallest to the              
largest member. We will always spread by exactly 2 cards, so in each step, we can check in                  
constant time if the value of the subsequence has changed, and for how much. This solution                
calculates the values of all subsequences in the asymptotic complexity of O(N^2). 
 
In order to improve the previous solution, we will take advantage of the fact that we are                 
searching for a subsequence with the maximal value, and not the values of all              
subsequences. In fact, the value of the subsequence when we iterate over all subsequences              
with the same center in the previous solution only increases at positions where a new fixed                
point is created. Therefore, it is sufficient to observe, for each center, only the subsequences               
with card x at the first card, and end at position x, or vice versa.  
 
The previous passage motivates the following solution: for each card, determine the center             
that can make it a fixed point, and store it in a list of cards for that center. Then, for each                     
center, we sort the associated list by the distance between the card and the center, and                
iterate over the list and increase the number of newly created fixed points by 1 for each new                  
element of the list. 
 
In order to calculate the value of each of the given subsequences, we also need to find out                  
the number of fixed points that disappear by reversing a subsequence. We can do this in                
constant complexity if we previously calculate the number of fixed points in all prefixes of the                



sequence of cards. The asymptotic complexity of the solution by parts is O(N) to calculate               
the fixed points in all prefixes, O(N) for associating the cards to the centers, O(N log N) in the                   
worst case for sorting the lists of all the centers, and amortized O(N) for iterating over all                 
considered subsequences, because the total number of elements in all the lists is equal to               
the number of cards, which is N. The total asymptotic complexity is therefore O(N log N),                
which is sufficient to get all points. 
 
Additionally, it is not too difficult to solve the task in O(N), but this is left as an exercise to the                     
reader. 
For any clarifications, consult the official solution. 
 
Necessary skills: prefix sums 
 
Category: ad-hoc 
 
 
Task San Author: Tonko Sabolčec  

 
To begin with, let’s observe a simple version of the task where the skyscraper heights are                
sorted ascendingly. Notice that then the heights don’t have a role, it is sufficient to find the                 
number of different subsets of skyscrapers such that the sum of the coins on them is larger                 
than or equal to K. A naive solution that tests every possibility is of complexity O(2N). We can                  
halve the array of skyscrapers (let the first half contain N/2 skyscrapers, and the other the                
rest). For the left half, we create a list L with all the sums of coins that can be obtained by                     
testing all subsets of skyscrapers in the left half. For example, if the left half has 3                 
skyscrapers that contain on their roof, respectively, 1, 2 and 3 coins, when we will add the                 
following values to list L: (0, 1, 2, 3, 3, 4, 5, 6) - notice that the number 3 appears 2 times                      
because there are 2 different ways which we can obtain that number of coins. Analogously,               
we will generate a list R for the right half. Now the task is broken down to the following: for                    
each number in list L, find how many numbers there are in list R such that their sum is less                    
than or equal to K. If we sort the numbers in the list R, then the answer to that query can be                      
found using binary search. Lists L and R consist of O(2N/2) elements, so the total complexity                
of this algorithm is O(N·2N/2). 
 
The idea for solving the original task is similar. The only problem are the heights of the                 
visited skyscrapers that must be sorted ascendingly. For each valid subset of skyscrapers in              
the left half, we will add to list L the pair (sL, hL) where sL denotes the sum of coins in the                      
subset of skyscrapers, and hL the height of the last skyscraper in the subset. For the right                 
half, we will generate a similar list, the only difference being that we will add to list R the pair                    
(sR, hR) where hR represents the height of the first skyscraper in the subset. Now the task                 
can be solved by counting, for each pair (sL, hL) from list L, the number of pairs (sR, hR) in list                     
R such that it holds sL + sR ≥ K i hR ≥ hL. We can solve this by grouping the sums in list R by                          
values hR, and for each pair (sL, hR) from the left half, we iterate over all groups for which hR                    
≥ hL, and determine the number of valid subsets by using binary search in the same way as it                   
was explained for the simpler version. 



 
This approach, where we divide the array into two parts and test every combination for each                
part, is known as meet-in-the-middle. 
 
Necessary skills: testing every combination, binary search 
 
Category: meet-in-the-middle 
 
 
Task Usmjeri Author: Adrian Beker  

 
To begin with, we’ll make node 1 the root of the tree. For node u that is not a root, let p(u)                      
denote its parent. Instead of directing the edges, let’s imagine we’re colouring them in two               
colours so that one colour denotes that the edge is directed from the child to the parent, and                  
the other from the parent to the child. Let’s observe two nodes a and b. Let node c be their                    
lowest common ancestor (LCA). Notice that there is a path from a to b or from b to a if and                     
only if the following three conditions are met: 
  

● All edges on the path from a to c are of the same colour 
● All edges on the path from b to c are of the same colour 
● If c is different from a and b, then edges (a, p(a)) i (b, p(b)) are of different colours 

  
Let’s now construct a graph where the nodes denote the edges of the given tree in the                 
following way. For each given pair (ai, bi) with LCA-om ci, we will add the following edges to                  
the graph: 
 

● The nodes that represent the adjacent edges on the path from ai to ci will be                
connected with a blue edge 

● The nodes that represent the adjacent edges on the path from bi to ci will be                
connected with a blue edge 

● If ci is different from ai and bi, the nodes that represent edges (ai, p(ai)), (bi, p(bi)) will                  
be connected with a red edge 

 
Now we want to know the number of possible ways to colour the nodes of this graph in two                   
colours so that the nodes connected with a blue edge are of the same colour, and the ones                  
connected with a red edge are of different colours. We can see that the connected               
components of the graph are mutually independent, so the solution is equal to the product of                
solutions by individual components. Furthermore, we can see that the colour of a node              
uniquely identifies the colours of all the other nodes in its component. Additionally, if we have                
a valid colouring scheme, it stays valid if we change the colour of all the nodes. This means                  
that each component has 0 or 2 valid colouring schemes, i.e. we only need to determine                
whether such a colouring scheme exists. We can do this with a DFS algorithm, starting from                
an arbitrary node and spread recursively, changing the colour when we reach a red edge               
and taking care of possible colouring contradictions. If there are no contradictions in any of               



the components, the final solution will be 2k, where k is the number of components,               
otherwise it is 0. 
 
Now we are only left with constructing the aforementioned graph. A naive construction is of               
the complexity O(M · N) and wasn’t fast enough for all the points. Notice that for each node x                   
of the tree, except the root and its children, we need to determine whether the nodes that                 
represent edges (x, p(x)) i (p(x),p(p(x))) are connected with a blue edge. We can do this by                 
using a recursive function connect(x) that returns the minimal depth of a node such that we                
have added blue edges on the path from that node to a node in the subtree of x. If the value                     
of connect(x) is smaller than the depth of p(x), then we add the blue edge, otherwise we                 
don’t. The value of connect(x) is calculated by taking into account its values for the children                
of x and also high[x] - the minimal depth of a node such that we have added blue edges on                    
the path from that node to x. We can get these values by, for each given pair (ai, bi) with LCA                     
ci, we update the values high[ai] and high[bi] with the depth of node ci if it is smaller than the                    
values high[ai], or high[bi], so far. 
 
The total time complexity of this solution is O((M + N) log N), and memory O(N log N + M). 
For implementation details, consult the official solution. 
 
Necessary skills: DFS algorithm, lowest common ancestor (LCA) 
 
Category: ad-hoc, graphs 
 
 
Task Garaža Author: Tonko Sabolčec  

 
Let’s observe any array of natural numbers A and the GCD (greatest common divisor) of               
each prefix in the array, P. For example: 

i 

Ai 
Pi 

1 

216 

216 

2 

144 

72 

3 

96 

24 

4 

96 

24 

5 

120 

24 

6 

560 

8 

7 

9 

1 

8 

8 

1 

Let’s observe the two adjacent values Pi and Pi+1. The following properties hold: 
● Pi is divisible by Pi+1. 
● Pi ≥ Pi+1. In the case that Pi != Pi+1, then it holds Pi ≥ 2 · Pi+1, which is why the value Pi                        

will change log2 109 times at most. 
 
We conclude that array P can be written in a different way, so that we group all the prefixes                   
with the same GCD, as an array of at most O(log 10^9) pairs of numbers (g, d) where g                   
represents one of the values Pi, and d represent the number of appearances of that value in                 
array P. For example, the array P from the above example can be written as: {(216, 1), (72,                  
1), (24, 3), (8, 1), (1, 2)}. Analogously, we can write the GCD of all suffixes of array A. 
 



We will solve this task using a segment tree where we will store the following data for each                  
interval: 

● GCD of all prefixes P (in the above mentioned form, so as an array of pairs (g, d)), 
● GCD of all suffixes S (also in the above mentioned form), and 
● The number of interesting contiguous subsequences in that interval, count. 

 
In order to apply the tournament tree data structure on this task, we need to define how we                  
can determine new data for the union of intervals, based on the aforementioned data for two                
adjacent intervals. Let there be two adjacent intervals L and R. Based on the GCD of all                 
prefixes L.P and R.P, let’s try to determine the GCD of all prefixes C.P (where C represents                 
the union of intervals L and R). Array C.P is calculated in the following way: 
 
g(C.Pi) = g(L.Pi) for 1 <= i <= len(L.P) 
g(C.Pi) = NZD(g(L.Plen(L.P)), g(R.Pi - len(L.P))), for len(L.P) + 1 <= i <= len(L.P) + len(R.P) 
 
We can notice that in some cases it will be possible to additionally group some elements in                 
the array C.P by values g(C.P), and that the length of the total array is never going to be                   
larger than log2 109. The complexity of determining this array is O(log 109), and analogously,               
we can determine the array C.S that represents the GCD of all suffixes of interval C. 
 
All that is left to determine is how we can calculate the number of interesting subsequences                
in the interval C (C.count). These values will be equal to the sum of values L.count, R.count                 
and the number of interesting subsequences that are in both intervals L and R. Let L                
correspond to the interval [l, m], and R to the interval [m+1, r]. Let’s observe the smallest p                  
from the interval L, for which a q exists from the interval R such that it holds that the                   
subsequence [p, q] is interesting, and the subsequence [p, q+1] is not. The GCD of the                
subsequence [p, q] can be calculated as the largest common divisor of the GCD-suffix until               
position p in array L.S and the GCD-prefix until position q in array R.P. However, we should                 
notice one more thing: as we increase p, so will the value q either remain the same or                  
increase by a positive number. Therefore, the number of interesting subsequences           
contained in both intervals L and R can be calculated using the two-pointer technique, p that                
will iterate over array L.S and q that will iterate over array R.P. The complexity of this                 
approach is O(len(L.S) + len(R.P)), i.e. O(log 109). To consult the details of joining two               
adjacent intervals in the tournament tree, consult the official solution. 
 
The total complexity of the joining is O(log 109), so the total complexity of the algorithm is                 
O((N + Q) log N log 109). 
 
 
Necessary skills: segment tree, calculating the greatest common divisor 
 
Category: data structures, mathematics 
 


