

COCI​ ​2017/2018
Round​​ ​​#1,​​ ​​October​​ ​​14th,​​ ​​2017

Solutions

Task​ ​Cezar Author:​ ​Marin​ ​Kišić

We can maintain the array ​deck​, where the ​i​th member denotes the number of cards left in
the deck of value ​i​. Initially, we set ​deck[2], deck[3], deck[4], deck[5], deck[6], deck[7],
deck[8], deck[9] and ​deck[11] to 4, and ​deck[10] to 16. Now, every time we read a new card
value, we decrease ​deck[value_of_read_card] by 1. Additionally, as we read the card values,
we calculate their sum. In the end, let ​X = 21 - sum​. The number of cards with the value
greater than ​X is than equal to the sum ​deck[x+1] + … + deck[11]​, whereas the number of
cards with the value less than ​X is equal to ​52 - n -
number_of_cards_with_the_value_greater_than_X​.

Necessary​ ​skills:​​ ​arrays

Category:​​ ​ad​ ​hoc

Task​ ​Tetris Author:​ ​Tonko​ ​Sabolčec,​ ​Marin​ ​Tomić

The most complex part of this task is to translate the images of Tetris figures into the
program code with all of their possible rotations, so we can recognize them in a matrix. One
possibility is to store one position of each figure and then programmatically generate the
rotations and compared them to the content from the matrix. Another possibility is to
manually write if-statements for each rotation. The first approach requires more
programming​ ​skills,​ ​and​ ​the​ ​second​ ​requires​ ​more​ ​careful​ ​code-writing.

When we decide on the strategy to recognize the figures, we are left with counting the
number​ ​of​ ​appearances​ ​of​ ​each​ ​one.​ ​You​ ​can​ ​find​ ​both​ ​approaches​ ​in​ ​the​ ​official​ ​solution.

Necessary​ ​skills:​​ ​if,​ ​for,​ ​arrays

Category:​​ ​implementation

Task​ ​Lozinke Author:​ ​Tonko​ ​Sabolčec

We can solve this task in the following way: for each password ​X​i​, we answer the query
“How​ ​many​ ​other​ ​passwords​ ​exist​ ​that​ ​contain​ ​​X​i​​ ​as​ ​a​ ​substring?

If, for each password, we solve the queries by iterating over all the passwords and checking
each possible substring, we can solve the task for 40% of total points. The complexity of this
algorithm​ ​is​ ​O(​N​2​​ ​L​2​),​ ​where​ ​​N​​ ​is​ ​the​ ​number​ ​of​ ​users,​ ​and​ ​​L​​ ​is​ ​the​ ​password​ ​length.

The solution can be sped up by calculating in advance, for each password, the different
substrings it contains, and answer the queries by counting the number of times a substring
appeared. The counting can be solved using a hash table, which is already implemented in
most​ ​programming​ ​languages.​ ​The​ ​total​ ​complexity​ ​is​ ​O(​N​ ​L​2​).

Necessary​ ​skills:​​ ​data​ ​structure​ ​knowledge

Category:​​ ​data​ ​structures,​ ​counting

Task​ ​Hokej Author:​ ​Vedran​ ​Kurdija

Imagine the game as a 6 * ​M matrix, and the players as 1 * ​I blocks. We will fill up the matrix
with players (blocks), without overlap. If a player covers the field (​X, Y​) in the matrix, it
means​ ​they​ ​are​ ​playing​ ​position​ ​​X​​ ​in​ ​the​ ​​Y​th​​ ​minute​ ​of​ ​the​ ​game.

We fill out the matrix (game) by sorting the players by quality and iterating sequentially from
the most quality player to the least quality player, and fill out the matrix row by row. If it so
happens that a player’s block doesn’t fit entirely in the current row of the matrix, we break
that​ ​block​ ​into​ ​two​ ​parts​ ​and​ ​continue​ ​with​ ​that​ ​player​ ​(block)​ ​in​ ​the​ ​following​ ​row.

This way, we made sure that we have the maximal possible sum of quality by the minute,
since we used each player, starting from the most quality one, until their endurance limit (or
less,​ ​in​ ​the​ ​case​ ​of​ ​the​ ​last​ ​player​ ​that​ ​might​ ​not​ ​fit​ ​entirely​ ​into​ ​the​ ​matrix).

We don’t have to worry that a player will play multiple positions in the same minute, because
it’s endurance is at most ​M​, and if they break from one row to another, they will never cover
the same column (same minute of the game) in both rows (both positions), because the
matrix​ ​width​ ​is​ ​​M​.

As for the output, we will store the substitute when we’re moving on to a new player (new
block) in the corresponding minute and position, keeping track of the previous player (block),
in order to know which player is leaving the game. If it’s a player from the start of the row, we
don’t output the substitute, but place that player with the initial six players. We will output the
substitutes​ ​chronologically​ ​in​ ​the​ ​end.

We need to be careful when outputting the substitutes. If a player is of endurance ​M and
breaks into two parts, from row ​X to row ​X ​+ 1, we will output them leaving the game in row
X + 1, and their entrance in row ​X for the same minute. Substitutes where the player enters
and leaves the game in the same minute are not allowed. We will solve this problem by
checking if we are dealing with a player of endurance ​M​, and if they don’t start in the first
column, then we will place them in the matrix broken into two parts, but still keep track of the
previous player, and declare them as the one leaving the game when the next player is
entering.

The​ ​implementation​ ​details​ ​are​ ​not​ ​complex,​ ​and​ ​are​ ​left​ ​as​ ​an​ ​exercise​ ​to​ ​the​ ​reader.

Necessary​ ​skills:​​ ​sorting,​ ​matrices

Category:​​ ​greedy​ ​algorithms

Task​ ​Deda Author:​ ​Luka​ ​Kalinovčić

We maintain an array that, for each child, keeps track of the station they got off on. The
query comes down to finding the first element smaller than or equal to ​Y in a suffix of that
array. Linear search (for loop) is obviously too slow for large test cases. Therefore, we will
use a tournament tree where each vertex holds the minimum of the corresponding intervals
of the observed array. With each Marica’s statement, we update the tree in the standard
way,​ ​from​ ​the​ ​leaves​ ​to​ ​the​ ​roots.

In​ ​the​ ​query,​ ​that​ ​starts​ ​from​ ​the​ ​root​ ​of​ ​the​ ​tree,​ ​we​ ​behave​ ​in​ ​the​ ​following​ ​way:

● Call the query for the left child if its interval contains elements in common with the
required​ ​suffix​ ​and​ ​if​ ​its​ ​minimum​ ​is​ ​smaller​ ​than​ ​or​ ​equal​ ​to​ ​​Y​.

● If​ ​the​ ​query​ ​for​ ​the​ ​left​ ​child​ ​found​ ​the​ ​required​ ​element,​ ​return​ ​it.
● Otherwise, call the query for the right child and return the given element or -1 if none

was​ ​found.

What​ ​is​ ​the​ ​complexity​ ​of​ ​the​ ​query?​ ​The​ ​largest​ ​number​ ​of​ ​nodes​ ​reached​ ​will​ ​be:

● the​ ​O(log​ ​​N​)​ ​nodes​ ​of​ ​the​ ​tournament​ ​tree​ ​that​ ​precisely​ ​cover​ ​the​ ​required​ ​suffix​ ​and
all​ ​the​ ​nodes​ ​on​ ​the​ ​path​ ​to​ ​these,​ ​which​ ​is​ ​again​ ​O(log​ ​​N​),

● the​ ​path​ ​from​ ​the​ ​first​ ​of​ ​the​ ​nodes​ ​whose​ ​minimum​ ​is​ ​smaller​ ​than​ ​or​ ​equal​ ​to​ ​​Y​​ ​to
one​ ​of​ ​the​ ​leaves,​ ​which​ ​is​ ​again​ ​O(log​ ​​N​).

Necessary​ ​skills:​​ ​tournament​ ​tree​ ​(segment​ ​tree)​ ​→
https://www.hackerearth.com/practice/notes/segment-tree-and-lazy-propagation/

Category:​​ ​data​ ​structures

Task​ ​Plahte Author:​ ​Marin​ ​Kišić

Let’s construct the following graph: let each node be a rectangle from the task, and the edge
between nodes ​A and ​B will exist if the rectangle represented by node ​A is the smallest
rectangle that contains the rectangle represented by node ​B​. We can notice that the
constructed graph is a forest of trees where the roots of the trees are rectangles that are not
contained in any other rectangle. We can construct this graph using the sweep line
algorithm. We scan on the x-axis from 0 to +oo and at the same time maintain the

tournament tree on the y-axis. When the imaginary scanning line reaches the left side of a
rectangle, we insert its index into the tournament tree in the interval [​b​, ​d​] (​b is the lower
y-coordinate, ​d is the upper). However, before inserting, we check to see in the tournament
tree which rectangle currently covers that interval in order to construct an edge between
them. When we reach the right side of a rectangle, we remove its index from the interval [​b​,
d​]. The complexity of this part is O(​N log ​N​). Consult the official solution for implementation
details.

Now let’s place each paintball ball in the node that corresponds to the smallest rectangle that
contains that paintball ball. We can do this using an almost identical sweep line algorithm in
the same complexity. Now we’ve reduced the task to calculating, for each node, the number
of different paintball balls in its subtree. We can do this by traversing the nodes from the
deepest to the root by using a DFS tree traversal, and for each node maintaining a set of all
paintball balls that are in the current node’s subtree. More precisely, when we’re processing
a node, we merge its set of paintball balls with the sets of its children. We need to make sure
that, when merging the sets, we always merge the smaller set with the bigger one, so we
don’t end up with a bigger complexity of the operation. You can read more about this ​here​.
Finally,​ ​for​ ​each​ ​node,​ ​we​ ​output​ ​the​ ​size​ ​of​ ​its​ ​set.

The complexity of the second part is O(​N log​2 ​N​), which is also the total complexity of the
algorithm. There is a solution of the complexity O(​N log ​N​), and it is left as an exercise to the
reader.

Necessary​ ​skills:​​ ​sweep​ ​line,​ ​tournament​ ​tree​ ​(segment​ ​tree),​ ​trees

Category:​​ ​sweep​ ​line,​ ​data​ ​structures

http://codeforces.com/blog/entry/44351

