

COCI 2016/2017
Round #5, January 21st, 2017

Solutions

Task Tuna Author: Nikola Dmitrović

The only problem in this task is data input. In the case when the absolute difference of two
numbers from the same line of the input is less than or equal to X, then the total price is
increased by the larger of the two numbers. If the difference is strictly larger than X, we know
that we have to input another number from the next line, and then add it to the total price.
We repeat the described algorithm N times.

Necessary skills: data input, decision-making commands, for loop, determining the larger
of two numbers
Category: ad-hoc

Task Pareto Author: Adrian Satja Kurdija

We will sort the amounts descendingly by size, from the largest to the smallest one. For
each “prefix” that consists of K richest clients, we will calculate the corresponding numbers A
and B, the share of that prefix in the number of accounts (A = K / N * 100%) and the total
share of the money for that prefix: B = (the sum of K largest amounts) / (the sum of all
amounts) * 100%. We now check if the difference B - A is the largest so far: if it is, we
update the temporary variables A_best , B_best , the ones we ouput in the end.

Given the size of the array, we need to efficiently sort it, in the complexity O(N log N), and
then efficiently calculate the sum of prefixes. The easiest way to do so is to calculate the
sum of K-prefix by adding the Kth element to the previously calculated (K-1)-prefix.

Necessary skills: sorting
Category: ad-hoc

Task Unija Author: Adrian Satja Kurdija

It is enough to observe only the right half of the image and in the end double the result. The
solution is to sum the heights of X-columns for X = 1, 2, …, 10^7, which can be done using a
for loop.

How to determine the height of the column at coordinate X? It is larger than or equal to the
height of column at coordinate X + 1. It is larger if a rectangle exists that ends at coordinate
X and is higher than the column at coordinate X + 1, otherwise it is equal. Therefore, initially,
we need to store the X-coordinates where the given rectangles end and their heights, then
traverse the X-columns “backwards”, towards the beginning, in order to apply the
aforementioned formula.

Necessary skills: arrays
Category: ad-hoc

Task Ronald Author: Adrian Satja Kurdija

For any line A-B we deduce: each Krump’s selection of city A or city B changes its existence,
so its final existence depends only on the parity of the number of selections of cities A and B.
Given this fact, it is sufficient to assume that Krump selects each city zero or one time
(selection or non-selection), which greatly simplifies the task.

We investigate two options: Krump either selects city 1, or he doesn’t. For each of the
possibilities, we will check whether they can lead to a complete graph. If we’ve fixed the
selection (or non-selection) of city 1, for each other city K we can easily determine if it needs
to be selected, considering the parity that must enable the existence of flight route 1-K. This
way, we determine the selections or non-selections of all cities from 2 to N. Since we’ve only
ensured the existence of flight routes 1-K, we will check the existence of all other lines, and if
all of them exist, the answer is DA (Croatian for “yes”).

An alternative solution is the following: the answer is DA (Croatian for “yes”) if and only if the
initial graph consists of exactly two components, each of them being a complete graph
(clique). The proof is left as an exercise for the reader.

Necessary skills: analytical reasoning
Category: graphs

Task Poklon Author: Dominik Gleich

We will solve the task using the offline method, where we first input all queries, and then
process them. To begin with, let’s define two functions, left(x), right(x) that correspond to the
position of the first left and the first right element, respectively, of the same value as the one
at position x. These two functions are easily computed, traversing from left to right, or from
right to left, keeping track of the ‘latest’ of each value using a hash map, structure Map in
C++ or a normal matrix, if we first compress the values. Let’s observe a query [L, R] and
functions left(x), right(x). It is easily noticed that we will count in a position x for query [L, R] if
left(x) < L <= x <= right(x) <= R < right(right(x)). Using natural language: we want the first left
appearance of the value to be before the left end of the interval, and the first right
appearance before or at the right end of the interval, in addition that there is no other
occurrence of the value in the interval. With this, we ensure the counting of each pair of two
identical values exactly once. Now the task is reduced to the following problem: for an x,
increment by 1 the solution of each query where left(x) < L <= x and where right(x) <= R <
right(right(x)).

In order to execute this query, we need to construct a tournament data structure over all
intervals in the following way: for each node of the tournament that covers interval [A, B], we
need to ‘insert’ the query [L, R] if A <= L <= R, in other words, L e [A, B]. After this, for each
x, we need to insert the interval [right(x), right(right(x))> into all nodes of the tree of which
the interval <left(x), x] is made of (typical query or update operation in a tournament data
structure). There are O(lg N) such nodes for each x. After inserting queries and intervals into
the tournament, we need to calculate the ‘contribution’ of each node to the queries located in
that node. We perform this using the sweep technique and leave the implementation details
as an exercise for the reader.

The total complexity of the given solution is O(N lg2 N). A solution of the complexity O(N lg
N) also exists, and is also left as an exercise for the reader.

Necessary skills: sweep, data structures
Category: tournament, data structures

Task Strelice Author: Mislav Balunović

Let’s construct a graph where the nodes are the fields of the board, and the edges are
obtained by connecting two nodes of each arrow that is not in the last column, using a
directed edge. Since each node has a degree of at most 1, the obtained graph consists of
two different types of components:

● Directed tree
● Cycle with “branches” leading to it

Each path from the first column to the last column is actually a path from a tree node to the
root of that same tree. Let’s mark the nodes in the first column as “special”. Now the task is
actually to color the K nodes of the tree so that each path from a special node to the root
contains exactly one colored node.
Let’s apply a trick: we can add an auxiliary node to the graph and an edge from each root to
that auxiliary node. Now we have exactly 1 tree in the graph and its solution is checked
using dynamic programming.

Let’s calculate the value of function f(x, i, k) that returns whether we can color all subtrees of
node x from its ith child onwards. The crucial part is to determine how many nodes we will
color in the ith subtree. If we color exactly y nodes, the solution exists if both values of f(x, i +
1, k - y) and f(child[x][i], 0, y) are equal to 1.
In the end, we make sure that we can arbitrarily color the nodes in the components that lead
to cycles.
If we iterate over all possible y, the complexity of this algorithm is O(NMK2).

In order to speed up the solution, we can use bitmasks.
Let’s denote the bitmask that contains bit f(x,i+1,k) in the kth position with F[x][i]. Additionally,
we denote with R[x][i] that same mask with the first 50 bits in reverse (the 0th element of F is

the 50th of R). Now f(x,i,k) = (R[x][i] >> (50 - k)) & F[child[x][i]]. We leave it as an exercise for
the reader the proof of the corectness of this optimization that enables the speed-up of the
aforemention dynamic programming approach to O(NMK).

Necessary skills: dynamic programming, bitmasks
Category: dynamic programming

