

COCI 2016/2017
Round #4, December 17th, 2016

Solutions

Task Bridž Author: Branimir Filipović

In order to solve this task, we needed to count the number of appearances of characters ‘A’,
‘K’, ‘Q’, and ‘J’ in all cards K​i ​together.

The solution of the task R is given in the following formula:

 4 A 3 K 2 Q 1 JR = * + * + * + *

Pseudocode (written in Python 3.x):
n = int(input())
r = 0

for i in range(n):
 s = input()

 for j in s:
 if j == 'A':
 r += 4
 elif j == 'K':
 r += 3
 elif j == 'Q':
 r += 2
 elif j == 'J':
 r += 1

print (r)

Necessary skills:​ for loop, strings
Category:​ ad-hoc

Task Kartomat Author: Nikola Dmitrović

First, we will input the given destinations in an array, and load the first couple of characters
of the chosen destination into a special variable. For each destination that is already given
and for each destination that we could have chosen, we check if it starts with this series of
characters. If it does, we determine the letter than can be chosen in the next step, or, more
precisely, the letter that follows after the given series of characters. Such obtained letter is
appended to the previously chosen letters.

In the end, we replace each letter from the string
‘'***ABCDEFGHIJKLMNOPQRSTUVWXYZ***'’ for which we haven’t determined that it can

be chosen in the next step with the character ‘*’. We are left with carefully printing the letters
of the alphabet in blocks of 8 letters.

Source code (written in Python 3.x)​ :
N = int(input())

L = []
for i in range(N):

L += [input()]

destination = input()

first_next_letters = ''
d = len(destination)

for i in range(N):

if L[i][:d] == destination:
 first_next_letters += L[i][d]

keyboard = '***ABCDEFGHIJKLMNOPQRSTUVWXYZ***'

for i in keyboard:

if i not in first_next_letters:
 keyboard = keyboard.replace(i,'*')

print(keyboard[0:8],keyboard[8:16],keyboard[16:24],keyboard[24:32]
, sep = '\n')

Necessary skills:​ strings
Category:​ ad-hoc

Task Kas Author: Ivan Paljak

The entire task comes down to correctly distributing the banknotes as described in the first
paragraph of the task. So, we need to distribute ​some of ​N banknotes into two parts so that
the sum of the money in each of the two parts is equal, and the total sum of the money of the
unused banknotes is the smallest possible.

Using a naive algorithm, we could have tried out every possible combination and get 50% of
total points. Since each banknote can end up with either Kile or Pogi or nobody, we can
conclude that the time complexity of such algorithm is O(3​n​).

Similar to the previous thought process, let’s imagine that we iterate respectively over the
banknotes and try assigning them to Kile, Pogi, or nobody. In any step of such algorithm we

should know which banknote we are currently processing and how much money have Kile
and Pogi collected so far. Let be a function that returns the largest possible sum of (k, ,)f a b
money that Kile and Pogi can collect if after distributed banknotes Kile has kn, and k)(− 1 a
Pogi has kn.b
Evidently,​ where (k, a, b) max{f(k , a, b), f(k , a [k], b), f(k , a, b [k])}f = + 1 + 1 + c + 1 + c [k]c
denotes the value of the ​k​ th​ banknote. Of course, is 0 if is different than , or (n , a, b)f + 1 a b

in the contrary. If we implement such a solution using the technique of dynamica
programming, we have constructed an algorithm of the complexity , where (ns)O 2 s
represents the sum of all banknotes.

To obtain all points, it was necessary to notice that it is sufficient to keep track in the state
the absolute value of the difference of the amount of money Kile and Pogi have collected so
far. We transition from state to states , and (k, diff)f (k , diff)f + 1 (k , diff [k])f + 1 + c

that represent, respectively, skipping of a banknote, assigning a banknote to(k, |diff c[k]|)f −
the person currently having more money, and assigning a banknote to the person currently
having less money. Since we have states, and the transition if constant, we can (ns)O
conclude that the algorithm is of the complexity , which is sufficient to obtain all points.(ns)O

Even though this wasn’t a requirement in the task, we advise you to think of an algorithm to
solve this task with a memory limitation of 32 MB.

Necessary skills:​ dynamic programming, state optimization
Category:​ dynamic programming

Task Rekonstruiraj Author: Adrian Satja Kurdija

Knowing that the numbers in the input have at most five decimal places, we transform them
to positive integers by multiplying them with 100 000. Mirko’s unknown numbers (also
multiplied with 100 000) are obviously some of the divisors of the obtained numbers.

How to efficiently find divisors of X? We can do this by iterating over all of its potential
divisors ​d from 2 to sqrt(X) and check whether X and X/​d are divisors of X. For each number,
we must find the divisors that are “good”, in other words, if they belong to the given set of
Mirko’s numbers. A divisor is “good” if all of its multiples from a given interval are located in
the required set, which is possible to check efficiently.

After finding the set of all the “good” divisors, we must choose the minimal subset where the
multiples “cover” all given numbers. This is a variant of the problem known as ​set cover
where you need to choose the minimal number of given subsets that cover the entire given
set. ​Set cover is an NP-complete problem, which means that an efficient solution does not
exist. Luckily, solutions exist that are correct in “most cases”. The task author excuses
himself for thinking that a greedy algorithm, one that always chooses the smallest good
divisor that covers a yet uncovered number, necessarily produces the minimal final set, but

there is an example for which this doesn’t hold (as an exercise, find the example). A greedy
algorithm is one of the possible ​heuristics - algorithms that are very successful, but
sometimes produce a suboptimal solution. The test data was such that a greedy algorithm or
any other reasonable heuristic performs correctly, scoring all of the points.

Necessary skills:​ decimal numbers, divisor lookup
Category:​ number theory, heuristics

Task Rima Author: Domagoj Bradač

We will reverse the given words and add them to a prefix tree. Two words rhyme if and only
if the node that represents one of them is a parent of the node that represents the other word
or if the two nodes have a common parent.

Let’s observe a sequence where each two adjacent words rhyme. The sequence begins at a
node in the tree and makes a couple of steps upwards or to the side. In other words, towards
the parent or between the nodes with a common parent. Once it makes a step downwards,
towards the child, it can only make steps to the side or downwards.

Now we can solve the task using dynamic programming. For each node, we calculate the
largest number of nodes in its subtree that we can traverse moving only upwards or
downwards (it doesn’t make a difference), and to the side. For each node, we can assume
that it is the highest node in the sequence, and find the two longest paths between its
children. We must be careful to count all nodes with a common parent. For details, consult
the official solution.

The total complexity is O(S), where S is the sum of lenghts of all strings.

Necessary skills:​ trie
Category:​ strings, dynamic programming

Task Osmosmjerka Author: Adrian Satja Kurdija

Let’s fix a block of the crossword. We can assume that we always choose the initial letter
from that block. Probability is defined as the number of favorable selections divided by the
number of possible selections. The number of possible selections of two words is equal to
the square of the number of possible selections of one word, and it is equal to the number of
possibilities for the initial field (M times N) multiplied with the number of possible directions
(8).

A bigger issue is calculating the number of favorable selections, the ones that provide two
equal words. If a word R appears in X possible places, then we can read it once in X ways,
and twice in X*X ways. Therefore, it is necessary to add up the squares of these numbers X,

or, more precisely, to identify different possible words and know in how many ways each of
them can be read.

We do this by using a ​hash​ function that converts a string to a number for easier
comparison. Hashing is problematic here because of the size of K (the length of the word). In
the case where M = N, we can notice that all words are periodic with regards to period N, so
it is sufficient to look at length K % N, and all such hashes can be calculated fast enough
using the ​rolling hash​ approach. This solution was worth 100 points.

In the general case, we can, as an auxiliary step, calculate all hashes which length is a
power of 2, so that the hash of length 2^(i+1) is obtained by combining two hashes of length
2^i. Then we write K in binary as the sum of powers of 2. This way, we calculate the hash of
each possible word as a combination of a couple of already calculated hashes. We can
determine the number of times each of them appears by sorting the set of hashes of
possible words and therefore obtain the required probability.

Necessary skills: ​hash, probability definition
Category: ​strings

