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Task Imena Author: Luka Barišić 

 
In order to solve this task, we read the book word by word. Let ​cnt​  be a counter initially set to 
zero. While iterating over the words of the book, we increment the counter by 1 each time we 
come across a word that is also a name. Additionally, if we come across a word that has a 
punctuation mark as its last character, it means that the current sentence is ending, so we 
need to output the counter and reset it to zero. 
 
Pseudocode (written in Python 3.x): 
def isName( word ):  
    # cut the last letter if it’s a punctuation mark  
    if( word.endswith( ('.', '?', '!') ) ):  
        word = word[:-1]  
    if (not word[0].isupper()):  
        return False  
    for c in word[1:]:  
        if( not c.islower() ):  
 return False 
    return True  
 
n = int( input() )  
words = input().split()  
cnt = 0 
for word in words:  
    if ( isName( word ) ):  
 cnt += 1 
    if( word.endswith( ('.', '?', '!') ) ):  
        print( cnt )  
        cnt = 0  
 
Necessary skills:​ for loop, word by word input, checking the last character in a string 
Category:​ ad-hoc 
 
 
Task Pohlepko Author: Tonko Sabolčec  

 
The solution that was good enough for 50% of points works under the assumption that a 
field’s right and down neighbours are different. This way, we can start from the initial field 
and in each step compare the neighbours - we will always move the token to a field that is 
alphabetically smaller. 
 
The problem arises when both neighbours are different. This problem can be solved by 
keeping track of, in each step, a list of all optimal positions in which we could have ended up 



 

after a certain amount of steps. We start with the list containing the initial field (0, 0) and in 
each step update the list so that we first check the minimal value of the neighbours of all 
positions in the current list, and then create a new list that will contain all neighbouring 
positions with that value. Since we can reach a field in 2 ways, we must be careful not to add 
the same position twice to the list, because this way we would copy the number of 
appearances of the same position in each iteration. 
 
Necessary skills:​ matrices, strings 
Category:​ ad-hoc 
 
Task Kroničan Author: Dominik Gleich 

 
It was possible to get partial points worth 40% of total points by trying out each permutation                 
of glasses, where the label of the glass in the permutation denotes spilling the content of the                 
glass with that label to one of the glasses to the right of that label in the permutation. We will                    
always choose spilling over such that the effort is minimal, since we don’t care which of the                 
remaining glasses we spill into. 
 
For 100% of total points, we use dynamic programming. Let the state be a bitmask of the                 
glasses we haven’t yet spilled into another glass, and the content of the rest of the glasses is                  
contained within these glasses. The transition we can make is picking one of the glasses               
from the set and spilling the content into any other glass from the set. The total complexity of                  
the transitions is O(​N​ 2​), and can be potentially accelerated, but there is no need. The total                
complexity is O(2​N​ * ​N​ 2​). 
 
For implementation details, consult the official solution. 
 
Necessary skills:​ dynamic programming, bitmasks 
Category:​ dynamic programming 
 
 
 

Task Kvalitetni Author: Mislav Balunović  

 
Let’s assume that we’ve processed the expression in the standard way, using the stack data 
structure and therefore obtained a tree of expressions. 
 
First, let’s notice that, if an expression can achieve value X, then that expression can 
achieve any value in the interval [0, X]. Because of this, it is sufficient to calculate the 
maximum for each subexpression. 
 
Let a quality expression A consist of expressions A​1​, A​2​, …, A​k​. 
 
 



 

We distinguish between two cases: 
● Smaller expressions are combined with an addition operation: 

Then the maximum of expression A is equal to the sum of the maximums of 
expressions A​1​, …, A​k​ or L​k​ if the sum is too high. 

● Smaller expressions are combined with a multiplication operation: 
If we assume that we don’t have the constraint on the maximum of subexpressions, 
we could assume, for each subexpression, that it’s value is exactly L​k​ / k, and then it 
is easily shown (for example, using the inequality of arithmetic and geometric means) 
that it is the maximum 
 
Let’s denote the maximums of subexpressions with V​1​, …, V​k​ and assume, without 
loss of generality, that it holds V​1​ � V​2​ � … � V​k​. Let’s denote with X​1 ​� … � X​k​ the 
values that these subexpressions will hold in our solution. 
We distinguish between two cases:  

○ L​ k​  / k �  V​ 1 
In this case, the best solution is obtained by setting all expressions to L​k​ / k. 

○ L​ k​  / k > V​ 1 
In this case, we set X​1​ = V​1​, reduce L​k​ by V​1​ and repeat the procedure for X​2​, 
…, X​k​. 
It is easily shown that, this way, we get the optimal solution, and for the formal 
proof it is crucial to take advantage of the following lemma. We leave the 
proof as an exercise to the reader. 
 
Let there exist i, j between X​ 1​ , …, X​ k​  such that X​ i​  ​ < V​i​, X​i ​< X​j​. 
Then a positive real number d exists such that, if X​ i​  is increased by d, and X​ j 
reduced by d, the product of numbers X​ 1​ , …, X​ k​  is increased, and all other 
conditions remain satisfied. 

 
Necessary skills: ​arithmetics 
Category:​ mathematics, greedy 
 
 

Task Zoltan Author: Stjepan Požgaj  
 
In order to determine the length of such longest strictly increasing subsequence, we must, 
for each position X in the initial sequence, determine the length of the longest strictly 
increasing subsequence starting at a position to the right of X and ending at position X (the 
sequence is read from right to left), and the number of ways in which we can achieve that 
maximum. The same idea applies for the longest strinctly decreasing subsequence. We can 
do this in a relatively simple fashion, using the Fenwick tree data structure in the time 
complexity of O(N * log N). 
 
We can notice that the solution is a union of a strictly increasing and a strictly decreasing 
subsequence such that the largest element of the strictly increasing subsequence is smaller 
than the smallest element of the strictly decreasing subsequence. If A is the length of the 



 

lnogest strinctly increasing subsequence ending at position X (including position X), and B 
the same for the strictly decreasing subsequence, and if num_A, num_B are, respectively, 
the number of ways to obtain them, then the maximum length of the numbers to the right of 
X (including position X) is A + B - 1, and the number of ways for getting this solution is 
num_A * num_B. 
 
The required maximum length is the maximum of the described maximum lengths for each 
position. We denote this number with R. Then the number of ways for which we can achieve 
this length is the product of the number of ways for all positions where the maximum length 
is equal to R multiplied with 2​N - R​. 
 
The factor 2​N - R​ is necessary because, if a solution consists of R numbers, then each of the 
remaining N-R numbers could be placed independently before or after all numbers. 
 
For additional details, consult the official solution. 
 
The time complexity of the solution is O(n * log n). 
 
Necessary skills:​ longest increasing subsequence, Fenwick tree 
Category:​ dynamic programming 
 
 
Task Meksikanac Authors: Ivan Paljak, Domagoj Bradač 

 
The problem can be broken down into two simpler problems: 

1. For a given polygon, find all integer points contained in its interior or on the edge. 
2. For each possible position of the polygon, determine whether a fly exists with its 

position being equal to an integer point in the polygon, after its translation. 
 
The first part of the algorithm will be solved using ​ray casting​ . A point is located within a 
polygon if and only if an arbitrary ray from that point intersects with the polygon in an odd 
number of points. However, there are special cases, because the ray can touch a polygon’s 
vertex, and can contain a polygon’s side. For details, consult the official solution or the 
following ​post​. 
 
At the same time, we will check all integer points having the same x coordinate. We can find 
the intersections of each polygon’s side with a vertical line through that x coordinate, and 
use the ​sweep line​  algorithm to check, for each point on the line, if they are inside of the 
polygon. This way, the complexity of the first part of the algorithm will be 

. But, we can perform the entire procedure in only one ​sweep​ , by(Xp Y p N log N))O * ( +   
maintaining a ​set​  of lengths, so we don’t have to sort the intersections for each x coordinate. 
The complexity of this procedure is .(Xp (Y p N) N log N)O *  +  +   
 
We will reduce the second part of the algorithm to a problem in one dimension. Let ​(X​ 1​ , Y​ 1​ ), 
(X​ 2​ , Y​ 2​ )... (X​ k​ , Y​ k​ )​  denote all integer points within a given polygon translated such that its 

http://stackoverflow.com/questions/27388767/point-in-polygon-ray-casting-algorithm


 

smallest X and Y coordinates are 0. We can represent these points with a binary string ​S​ 1​ , 
where we write 1 at position for each of the ​k​  points inside of the(Y p 2) Xi Y i2 +  *  +   
polygon, and write 0 for the remaining positions in the string. Now, translating the polygon for 

corresponds to translating the string for . We define the string ​S​ 2X, Y )(  (Y p 2) X Y2 +  *  +   
that represents the flies in the same way. 
 
We are left with determining, for each possible polygon translation, whether the bitwise ​and 
of the translated string ​S​ 1​  and string ​S​ 2​  is equal to 0. We can do this by using a ​bitset​  in the 
complexity of ​ , but with a very small constant. But, a faster solution exists: we)O((Xp p)* Y 2  
will reverse the string ​S​ 2​ , and observe strings ​S​ 1​  and ​S​ 2​  ​ as polynomials in the standard 
notation. From their product, we can make out the required information. The details of this 
approach is left as an exercise to the reader. If we implement the multiplication of 
polynomials using ​FFT​ , this part of the algorithm is of the complexity 

.((Xp Y p) log(Xp Y p))O *  *  *   
 
The total complexity of the algorithm is ).(Xp N N log N O *  +  +  Xp Y p) log(Xp Y p)( *  *  *   
 
Necessary skills: ​geometry, multiplication of polynomials 
Category: ​geometry, ad-hoc 
 


