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Task Go  Author: Branimir Filipovi ć 

 
In order to calculate Ei, the number of Pokémon of type Pi that Mirko can evolve, we must 
implement the algorithm given in the following pseudocode: 
 
Ei = 0 
while Mi >= Ki : 
 Mi = Mi - Ki + 2 
 Ei = Ei + 1 
 
Alternatively, we can use the following formula: 
 

 
 
Why this formula is suitable is left as an exercise for the reader. 
 
Now that we have calculated all Ei, all that’s left is to output the sum of all Ei and the first 
Pokémon Pi that has the largest Ei. 
 
Pseudocode (written in Python 3.x): 
N = int(input()) 
 
maximum = total = 0 
 
for i in range(N): 
 pokemon = input() 
 Ki, Mi = map(int, input().split()) 
 
 evolve = 0 
 while Mi - Ki >= 0: 
      evolve += 1 
      Mi -= Ki 
      Mi += 2 
     
 total += evolve 
     
 if evolve > maximum: 
      maximum = evolve 
      which = pokemon 
 
print(total) 
print(which) 
 



 

Necessary skills:  basic mathematic operations, for loops, algorithm for finding the 
maximum 
Category:  ad-hoc 
 

Task Tavan  Author: Stjepan Požgaj  

 
For 60% of points, the ink is spilled over only one letter, so it is sufficient to alphabetically 
sort the letters that could replace it and use the Xth one. This is a good example of a task 
where a simple approach can get you a large number of points. 
 
There are multiple solutions where it is possible to obtain all points. One of them is to 
convert the number X - 1 to a number in a numerical system where the base is K. For easier 
implementation, we pad the number with leading zeros so that the total number of digits is 
M. Let the digits of the new number be a1, a2,  a3 ,..., am, respectively. Then the ith unknown 
letter must be replaced by the ai

th letter from the sorted order of letters that could potentially 
replace the ith letter (the letters in the sorted order are 0-indexed). 
 
The time complexity of this solution is O(M * K lg K). 
 
Necessary skills:  strings 
Category:  ad-hoc 
 

Task Nizin  Author: Ivan Paljak  

 
Let’s first analyze the suboptimal solutions from the SCORING section. 
 
For 30% of points, the task could have been solved using an exhaustive search. In other 
words, we could have modified the array in every possible way and, in the end, output the 
minimal number of moves that lead to the solution. Since we can make (N - 1) different 
moves on an array of length N, and because after each move the length of the array 
decreases by 1, we conclude that the complexity of this solution is O(n!). 
 
Let’s first observe the first and last member of the array. Since we wish to transform the 
array to a palindrome, the first and the last member must be equal in the end. If they are not 
equal at the given moment, obviously at least one of them must be joined with its neighbour. 
This kind of thinking leads us to a recursive formulation of the solution. Let f(l, r) denote the 
minimal number of moves it takes for elements A[l], A[l+1], …, A[r - 1], A[r] to transform to a 
palindrome. Given previous remarks, 

 
l > r, f(l,r) = 0 

l <= r, f(l,r) = min(1 + f(l+1, r), 1 + f(l, r - 1), f(l+1, r-1) )  
 
where the part written in bold is taken into consideration only if it holds A[l] = A[r]. Let’s 
notice that in each step of the algorithm, the value A[l] is equal to the sum of all its 
predecessors, and A[r] is equal to the sum of all its successors, whereas the elements in the 
middle are not modified. Using a dynamic programming approach, more precisely the 



 

memoization technique, the complexity of such a solution is O(n^2), which is enough for 
60% of points. The implementation of this algorithm can be found in the file nizin_n2.cpp.  
 
In order to obtain all points, we need to use the fact that the numbers in the input are 
positive. As in the previous paragraph, we approach the task from the outside within. When 
we focus on an interval [l, r], we differentiate between a couple of cases: 
 
If it holds A[l] = A[r], then we don’t need to join the outer elements, instead we continue 
solving the interval [l+1,r-1]. 
 
If it holds A[l] < A[r], then we surely can’t profit from joining elements A[r] and A[r - 1] 
because their sum is necessarily larger than A[l] that can’t be left unjoined. Therefore, we will 
join elements A[l] and A[l+1] and continue solving the interval [l + 1, r]. We analogously solve 
the case where A[l] > A[r].  
 
Since we will decrease the interval for at least 1 in each step of the algorithm, we can 
conclude that the complexity of the algorithm is O(n), sufficient for all points. 
 
Necessary skills:  complexity analysis, breaking the problem into cases. 
Category:  Ad-hoc 
 

Task Prosje čni  Author: Mislav Balunovi ć  

 
The task can be solved in a lot of different ways. 
 
One of the possible solutions is the following: 

● In the first row, we write down the numbers 1, 2, . . . , � −  1,
� ∗ (���) 

�
 

● Each following row but the last is obtained by adding 
� ∗ (���) 

�
to each number from 

the previous row 
● The last row is obtained in the following way: 

For each column, if the numbers a1, …, an - 1  are the numbers written in that column 
so far, we write the number n * an - 1 - (a1 + a2 + … + an - 1) in the nth row in that 
column. By doing this, we achieved that the average of that column is equal to the 
next to last number in the column. 

 
The only thing left is to make sure that the average of the last row is in that row. We leave 
this as an exercise for the reader to prove that the average is equal to the number in the last 
row and the next to last column. 
 
Necessary skils: arithmetics, combinatorics 
Category:  mathematics 
 
 

Task Zamjene  Author: Mislav Balunovi ć  



 

 
We will use the union-find data structure in solving this task. 
 
Let’s first describe the solution that isn’t fast enough, but serves as a motivation for the 
actual solution. 
 
What data must be remembered in each component? 
Each component corresponds to a set of positions. 
Let’s denote the mutiset of all values contained in the array p on positions contained in 
component K with PK, and the multiset of all values contained in the sorted array q on 
positions contained in component K with QK. 
When joining components A and B into a new component C, we see that PC = PA ∪ PB and 
QC = QA ∪ QB.   
 
It is crucial to notice that the array can be sorted if and only if PK = QK holds for each 
component. 
 
After this, we can notice that it is not necessary to remember the exact multisets of numbers, 
but only their hash values. If number 1 is contained c1 times in multiset S, number 2 c2 times, 
… n cn times, then we define the hash vaule of set S as: 

h(S) = c1 * H + c2 * H2 + … + cn - 1* Hn - 1 
 

When joining components, we simply add the hash values of the original components. 
 
But, we still haven’t mentioned how to answer query number 4. 
We actually want to know the number of pairs such that it holds: 
 

PA + PB = QA + QB (where now P and Q denote the hash values) 
⇔ 

PA - QA = - ( PB - QB ) 
 

Now we know how to answer the query by maintaining map M where M[d] tells us how many 
nodes there are with the component’s difference P - Q being exactly d. 
 
The time complexity of this solution is O(Q lg N). 
For implementation details, consult the official solution.  
 
Necessary skills:  union-find, hash 
Category:  graph theory 
 
 

Task Burza  Author: Domagoj Brada č 

 
We will root the tree in node 1. To begin with, let’s notice that, after the ith move, the coin will 
be located in a node of depth i. It is clear that it is optimal for Daniel to label a node of depth i 
in the ith move. Now we can reformulate the task: given a set of nodes where none of the 



 

nodes is a root and the nodes are of different depths, and there is no such node of depth k 
where none of its predecessors is labeled, does such a set exist? 
 
The nodes of depth k will be called leaves. We can remove all nodes which don’t have a leaf 
in its subtree (this includes the nodes of depth larger than k), because Daniel surely wins if 
the coin is located in such a node. Now the leaves are indeed leaves in the given tree. From 
now on, we will only observe trees obtained after removing unnecessary nodes. 
 
Let’s analyze the following simple algorithm: in the ith move, we will label a node of depth i 
and remove all nodes in its subtree. By doing this, we have removed at least k - i + 1 nodes 

in the ith step, which means that, in k steps, we have removed at least 
�(� � �)

�
 nodes. This 

means that, in the case � ≤
�(� � �)

�
, we know Daniel can surely win. 

 
This is our motivation to find an even better bound, and we will use the following algorithm to 
do so: initially, for each node v, we will define f(v) as the minimal depth at which a 
descendant of v has more than one child. In the ith move, we will label node v of depth i with 
the minimal value f(v) from the tree and remove all its descendants. 
 
Using the induction principle, we will prove that, by using this algorithm, Daniel wins if it 
holds �� ≥  �. For the sake of induction, we will not observe a single tree, but multiple trees, 
which will actually represent the subtrees of the original tree. We will denote with d the 
minimal number for which it holds that, after d moves, there exists a non-removed node v for 
which it holds f(v) = d. If a number d for which this holds doesn’t exist, it means that we have 
made k moves total, and in each move removed at least k nodes (we count the 
descendants, but also the predecessors of that node, that are all mutually distinct). But, that 
means that in each of d moves, we removed at least 2k - d nodes (the worst case is for f(v) = 
d), and then we removed d nodes to depth d, and at least 2(k - d) below depth d, because 
the tree branches at that depth. 
 
Let’s see what we have left: a new forest of trees that has at most n2 ≤ n - d * (2k - d) nodes, 
and the new length to which the coin musn’t propagate is k2 = k - d. Now, from the condition 

�� ≥  �, it follows ��
� ≥  ��, so the claim holds by the induction assumption. 

 
We have shown that for �� ≥  � Daniel always wins, which means that we are left with 
solving the case when this doesn’t hold. But, then � < 20, so we don’t need to find a 
polynomial solution! 
 
Let’s denote the nodes in the order in which they appear in the dfs traversal of the tree. Now 
each node in the tree covers an interval of leaves, or, in other words, these are the nodes 
located in its subtree. We will solve the task using a dynamic programming approach. The 
state will be represented with a number and a bitmask k bits in size. Let dp[T][mask] denote 
whether we can cover the first T leaves by labeling only nodes of depth written in mask. The 
transition is simple, in a given moment we can choose any node out of at most k where the 
first leaf in the tree is labeled with T. Let’s notice that, even though for each position T the 
transition can be k different nodes, each node will appear only in one position in the 
transition. 



 

 

The total complexity is �(2√� ∗ �). 
 
Necessary skills: bitmasks, dynamic programming 
Category: ad-hoc, dynamic programming  


