
Croatian Olympiad in Informatics
Zagreb, April 2nd 2016 Algorithms description

Algorithms description

Tasks, test cases and solutions prepared by: Frane Kurtović, Gustav Matula, Ivan Katanić and Ante Ðerek.
The examples of implemented solutions are given in the attached source codes and do not necessarily
match every detail of the algorithms described here.

Task: Dijamant

Suggested by: Ante Ðerek
Necessary skills: graph, dynamic programming, map data structure

The first step in solving this task is choosing which structure to use to store class names, in other words, to
use to assign class names to ordinal numbers. One option is using the map<string, int> data structure
in C++ programming language. When we recognize a new valid declaration, we assign the next ordinal
number to the class name. The first two subtasks come down to checking whether the classes are declared,
so this is easily solved now. As an alternative, for example when using the C programming language which
doesn’t have this data structure, we can first read, save and sort the names of all declared classes. The
index of individual classes can then be efficiently found using binary search. In any case, the complexity
of one query to the structure is je O(log n).

A

X Y

X'=Pi Y'=Pj

K

For the other two subtasks, we need to consider the paths in the
directed graph that models the class hierarchy. Let’s assume that we
are considering a new declaration “K : P1 P2 . . . Pk ;” and first try
to determine when a diamond A, B, X, Y is formed when adding it.
Firstly, evidently it must hold K = B. Furthermore, there must exist
a path from X to K and from Y to K so let X ′ and Y ′ be classes on
these paths immediately before K. Since they are the last ones on the
paths, classes X ′ and Y ′ need to be one of the classes P1, P2, . . . , Pk

which K inherits. It is crucial to notice that classes X ′ and Y ′ cannot
be derived one from another – in fact, when X ′ would, for example, be
derived from Y ′ then A, X, Y , X ′ would be a diamond that already
exists before adding the new declaration.

Therefore, when adding a new declaration, it is sufficient to check the following: Do two classes Pi and Pj

exist among classes that K inherits and which are not derived from each other, and that are both derived
from some class A? Since we are processing declarations, for each valid declaration of class K, we will
calculate RK – the set of all ordinal numbers of classes which K is derived from. A new declaration is not
valid if there exist two classes Pi and Pj among classes that K inherits so that it holds Pi 6∈ RPj

(Pj is
not derived from Pi), Pj 6∈ RPi (Pi is not derived from Pj) i RPi ∩RPj 6= ∅ (Pi and Pj are both derived
from some class A). This logic can be directly implemented by considering a pair of classes Pi, Pj , which
leads to an algorithm of the complexity (O(n3)), but can be optimized enough to score 100 points (for
example, by using bitmasks).

The targeted solution efficiently checks whether classes Pi and Pj exist that satisfy the aforementioned
conditions. Among other things, it is necessary to notice that if Pa is derived from Pb, then Pb doesn’t
even need to be considered. For each declaration, we do the following:

1. Sort the classes P1, P2, . . . , Pk from the later declarations to the earlier ones.

2. We maintain the set R that corresponds to the union of all RPi
for classes Pi that we have considered

thus far. The set R can be stored as an array of n booleans.

3. For each class Pi.

(a) If Pi is already in R, ignore it.
(b) Otherwise, add all elements from RPi

to R. If we encounter an element already in R while
adding, then we found a diamond and the declaration is dismissed.

1 od 5



Croatian Olympiad in Informatics
Zagreb, April 2nd 2016 Algorithms description

For each declaration, the number of processing steps is proportional to the total number of elements that
are added to R, so it is bound by n. The total complexity is O(n2 log n).

Task: Palinilap

Suggested by: Ivan Katanić
Necessary skills: strings, hashing, binary search, sweep line algorithm

For the sake of simplicity, let’s assume that we are only dealing with palindromes of odd length, and that
the described solution is easily expanded to the general case. The center of a palindrome is the character
in its middle, or the position of that character in the original sample. The first step of the solution is, for
each position a (1 ≤ a ≤ n), to determine ra – the half length of the longest palindrome with its center
at a (the longest palindrome with its center in a is wa−ra,a+ra). Notice that the weight of the original
sample is equal to the sum of all the numbers ra + 1.

There are multiple efficient ways to calculate all numbers ra. One option is, for each position a, to determine
the value ra with binary search. In order for this approach to be efficient enough, we need to have a method
that can quickly examine whether two arbitrary substrings of sample w, for example wx,y and wu,v, are equal.
This can be done using the so-called rolling hash function (http://wiki.xfer.hr/hashing_stringova/).

When we have calculated all the values ra, we know the current weight of the sample. In the second step
of the solution, we examine how the weight changes if the character at position i is converted to c. After
conversion, some palindromes disappear, and new ones appear. First, we calculate how many existing
palindromes disappear.

slavimbnavolimilovanamirko

ai

ra ra

Let’s now consider only palindromes with its center at a. Some of them disappear only if the converted
character’s position is from the interval [a− ra, a + ra], and if, for example, the position of conversion i is
from the interval [a− ra, a], then exactly i− (a− ra) + 1 palindromes with centers in a disappear. With
the help of this fact, we can implement a sweep line algorithm that calculates in a single pass, for each
position, the total number of palindromes that disappear if the character is converted at that position.

slavimbnavolimilovanamirko

ai

d d

We still need to find the number of newly created palindromes for each possible conversion. Let’s assume
that, after the conversion at position i into character c, a new palindrome appears with its center in a,
where i < a. Let d = a− i. Therefore, the sample wa−d,a+d was not a palindrome before conversion, and
now is. Since wa−d,a+d is now a palindrome, so is wa−d+1,a+d−1, but this sample hasn’t been changed, so
it was a palindrome before conversion. Hence, wa−d+1,a+d−1 was the longest palindrome with its center
in a before conversion, so d is equal to ra + 1. We conclude that each new palindrome with its center in a
can appear so that either the character at position a− ra − 1 is converted to the character at position
a + ra + 1 or vice versa. Therefore, similarly to how we calculated ra (binary search with hash function to
compare strings), we can calculate the number of new palindromes that appear in each of the two cases.

2 od 5

http://wiki.xfer.hr/hashing_stringova/


Croatian Olympiad in Informatics
Zagreb, April 2nd 2016 Algorithms description

Now we have calculated everything we need in order to know how many palindromes appear for each
position i and each new character c, and how many disappear if the character at position i is converted to
c, so the task is solved.

3 od 5



Croatian Olympiad in Informatics
Zagreb, April 2nd 2016 Algorithms description

Task: Relay

Suggested by: Frane Kurtović
Necessary skills: 2d geometry

�

��

�

�

��

�

��

��

��

�

Let’s denote the position of the first ship
with P . The first part of the task is to find
the set of points S that are visible from po-
int P – the receiver of the Mayday message.
The second part of the problem is to find
the set of points S′ that are visible from at
least one points from set S – the receivers of
the Relay message. In the rest of this text,
the expression to the left or right of line P
is often used and means that, if the observer
is at point P and is looking towards points
L, something is to the right or to the left
of that line. This expression directly corres-
ponds to the geometric primitive ccw that
is most often implemented using the vector
product. The polygon edges are given coun-
terclockwise, so we will use the expressions
before or after point T, and will be denoted
respectively with Bt and At.

We determine the points that are visible from P using the left and right tangent, PL and PR. All points
to the left of PL and to the right of PR are directly visible. Additionally, points inside of the triangle
PRL are directly visible. The right tangent from point P is determined in a way that we find the edge R
for which it holds that point P is to the right of side BrR and to the left of side RAr. The left tangent is
determined in a similar way.

We find points from set S′ so that we first find the points that receive the Relay signal from points to the
left of PL, then in the same way determine those that receive the Relay signal from points to the right of
PR. We will only describe the process for the left tangent. Let K denote the set of points to the left of
PL. In the picture, these points are P3, P7, P10 and P11, and the red lines are their left tangents, in the
rest of the text just tangents.

Let’s observe which area is covered by point T from set K, without it being covered by the starting point
P . Let TT ′ be the tangent that touches the polygon in point T ′ and let C be the intersection of tangents
TT ′ and PL. This area consists of all points to the left of TT ′ and to the right of PL, and of all points
inside of the triangle CLT ′.

Notice that the point which has the tangent that forms a smaller angle with the line PL has an area that
is a subset of the area of the point that has the tangent that forms a larger angle. This means that we
only need to find the point that has the tangent that forms the largest angle and count the points that
are visible from it. The only other problem is how to calculate the tangent to the polygon from every
point. If we denote edge L with index 1 and denote other edges clockwise with ascending indices, then
the edge in which the tangent from the required point touches the polygon will have the largest index
(among points from set K). This is why we will maintain the largest index thus far and increment it
with every new point until it becomes the edge in which the tangent from the current point touches the
polygon. When we test whether we need to increment the index from point T , we only need to check if
the next edge in the polygon is to the left of the length that connects T to the current edge. If it is, then
we increment the index.

Regarding implementation, we need to pay attention to the collinearity of points and make sure that the
edge points between areas are not counted multiple times. The total complexity of the algorithm is O(N).

4 od 5



Croatian Olympiad in Informatics
Zagreb, April 2nd 2016 Algorithms description

For the curious reader: Solve the version of the task where in each step we give two points a and b
and ask whether b will receive one of the signals if a transmits the Mayday signal. You are given 100 000
queries, all other limitations stay the same.

Task: Torrent

Suggested by: Frane Kurtović
Necessary skills: dynamic programming, binary search

Let’s first solve the simpler problem where there is only one source. Let’s denote with f(i) the minimal
time needed for a file to spread over the subtree of node i (if we already have the file in node i, but not in
the other nodes of the subtree).

Let’s denote the children of node i with c1, c2, ..., cm. If the file is spread over node c1 first, then c2 and
so on, the total time will be maxm

j=1{f(cj) + j}. Therefore, we need to choose the optimal order of sending
the file to the children. It’s intuitively clear that it is best to first send the file to the node in which the
further sending requries the most amount of time, so node cj that maximizes f(cj). This is easy to see, if
we assume that we have a pair of children that are not in sorted order, in other words, f(cj) < f(ck) i
j < k. Then they potentially contribute to the maximum with f(ck) + k, which is strictly larger than
max{f(cj) + k, f(ck) + j}, so the substitution of these two nodes cannot worsen the total time. Therefore,
it is truly optimal to sort the children.

We have the relation: f(i) = maxm
j=1{f(cj) + j}, where cj are sorted descendingly by f(cj). The direct

implementation is of the complexity O(NlogN).

Let’s now return to the problem with two sources, a and b. Let’s observe the path from a to b. It is clear
that, in the optimal spreading of the file on it, there will exist an edge (c, d) such that the file will come
to node c from a and to d from b. This is why the optimal spreading would carry out identically even if
we erased the edge (c, d) and split the tree into two components. If we knew which edge we need to erase,
we would just do it and solve the problem for a single source on both given components. The maximum
of these two times would be optimal.

One solution is to try edge after edge on the path from a to b and take the best. The complexity of this
algorithm is O(N2logN), because we use the O(NlogN) algorithm to solve the task with a single source
of complexity O(N) times.

Let’s denote the edge from a to b with numbers from 1 to L. Let’s denote fa(i) as the time required to
spread over the component of a if we erased the edge i. Analogously, let’s use fb(i) for the component of
b. The solution is then minL

i=1{max{fa(i), fb(i)}}.

A crucial observation is that, as we traverse from a to b, the component in which node a is in (after
erasing an edge) becomes larger, so the total time to spread the file over the component of a can’t be
reduced. For component of b the analogous observation applies, the time cannot increase.

Therefore, sequence fa(i) is ascending, and fb(i) is descending. So, if we have i for which fa(i) < fb(i),
the lesser maximum can be found only for a larger i. The similar applies for fa(i) > fb(i). Therefore, the
optimal edge can be found using binary search. The total complexity is then O(Nlog2N).

For the curious reader: Try to reduce the complexity of the algorithm for a single source. Solve the
task if, initially, the file is located on three computers (using the same limitations).

5 od 5


