Task NIZOVI Author: Tonko Sabolcec

r \ 7

Let's assume that empty arrays don’t exist. Then, for each character *{’, ‘}/, *,” and
letter of the English alphabet, we can define a set of commands to execute:
1. Character'{":
O Print '{* and a newline
O Increase current indentation by 2
O Indent
2. Character '}":
O Print a newline
O Decrease current indentation by 2
O Indent
O Print '}’
3. Character?',”:
O Print?',” and a newline
O Indent
4. Letter c
O Printc

Additionally, we'd need to check the case when an array is empty and equal to

3

Necessary skills: if-else, strings
Category: ad-hoc, parsing

Task PROZOR Author: Ivan Paljak

The limitations from the task allow us to evaluate every possible shot. In other
words, we can assume for each pixel that it is the one located in the upper left
corner of the racket and then count how many flies would be affected by that shot.
When done with this procedure for each pixel, we know the position of the upper
left pixel of the optimal shot, and that is sufficient in order to reconstruct the image
and score all points for this task. Additionally, we need to make sure that the racket
is located entirely within the image and that we won't affect the flies located on the
edges of the racket.

The time complexity of the aforementioned procedure is O(R™N2*SA2). For
implementation details, consult the official solution. Moreover, we encourage you to
come up with a solution of this task given the limitation (3 <= R, S <= 1000).

Necessary skills: matrices
Category: ad-hoc

Task OZLJEDA Author: Ivan Paljak

Firstly, let's notice that the first k+1 elements of the xorbonacci sequence are
cyclically repeated throughout the entire sequence. In other words, it holds X, =
Xarksy fOr every A. The proof of this statement is left as an exercise to the reader.

Now we can recall some properties of the xor operation (labeled with ~). More
precisely, we are interested in the following properties:

A~0=A
ANA=0
A"B=B"A

Using these properties, we deduce that it holds:
XN XKy N X = (XN XN X)) N XN XN N X L)

Using the sequence’s cyclicality from the first paragraph and the aforementioned
properties, it is clear that the xor of the first N elements of the xorbonacci sequence
is equal to the xor of the first N’ elements of the xorbonacci sequence where 0 <=
N’ <= 2(K+1). Therefore, it is enough to preprocess the xors of the first 2(K+1)
elements and, using them, answer all given queries in O(1).

Unveiling the explicit relation between N and N’ is left to you as an exercise. If you
don't succeed, consult the official source code.

Necessary skills: properties of xor, prefix sums (xors)
Kategorija: ad-hoc

Task OTPOR Author: Branimir Filipovi¢

Firstly, we must notice that each circuit S is either in the form of (S,|S,|S;]..-1S,)
or in the form (S,-S,-S;-...-S,), where each of §,,S,,S;,...,S,, is either in one of the
forms of S or equivalent to some form of R;,R,,R;,...,R,,.

Therefore, we can write the following pseudo code for the recursive function that
solves the task:

res(S):
if § = R, then return R,
else if S = (S,-S,-S;-...-S,,) then return sum(res(S;))
else return 1/(sum(1/res(S;)))

Necessary skills: strings, recursion
Category: ad-hoc, recursion, parsing

Task PROSTI Author: Mislav Balunovié

Let's assume a fixed K (the number of consecutive numbers) and denote the
number of happy humbers in the set {i, i + 1, ..., i + K - 1} with f(i). It is clear that
[f(i) - f(i + 1)] < 1.

Additionally, we can use brute force to find the first 150 consecutive composite
numbers. If they begin with the number j, then it will hold f(j) = 0 for each K <=
150.

Lemma: Let a and b be integers and let f(a) <= L <= f(b). Then there exists x from
the interval [a, b] such that f(x) = L.

The proof of this lemma is simple and is left as an exercise to the reader.

Now, let’s work with the numbers K, L, M from the task.
By applying the lemma to a = j and b = 1, we know that a solution must exist in
the interval [1, j]. However, iterating over the entire interval would be too slow.

We use the binary search technique. Let’s assume that we know for sure that our
solution is in the interval [a, b]. Letc = (a + b) / 2.

Then we can apply the lemma to one of the intervals [a, c] or [c, b] and solve the
task recursively.

The total time complexity of this algorithm is O(Q * log j).

Necessary skills: combinatorics, binary search
Category: mathematics

Task PROKLETNIK Author: Dominik Gleich

The task is to find the longest magical subarray of a subarray from the original
array. An array is magical if all the value of all elements are between the values of
the first and last element of that array. The solution for 70% of total points has a
complexity of O(N sqrt N) and will not be explained here, but you can consult the
official solution for it. Regarding the solution for all points, special thanks to Mislav
Bradac for coming up with such solution and implementing it.

To begin with, we will solve the case when the first element is the minimal element
in the magical subarray, and the last element is the maximal. The case when the
first element is maximal and the last minimal is solved analogously over an array
with all elements replaced with their negative values.

Let’s sort all queries with regards to the right end and now sweep from left to right,
adding the elements and processing the queries. The idea is to, while sweeping and
located at position p, maintain the array A[x], such that A[x] = longest subarray
whose left end is at position x, and the right end wherever between <x, p]. If we
have such an array, it is easy to see that, at position p, the answer for query [L,
p] is the maximal value A[x], for x from the interval [L, p]. Let’s try to efficiently
maintain this array. The structure that arises as a solution to this kind of problem is
usually the tournament structure. It is necessary to update some positions when we
add a new value x at position p. Firstly, given the fact that we are solving the first
case when the last element is maximal, and the first minimal, it is obvious that the
value x will only be important until the first left position where the value v > x is
located. We will label this position as I. The details of finding such position is left for
later. Additionally, all larger values to the left of x need to be labeled as unusable
because they could never be the left end of the interval that passes over x because
x is smaller than them. We will describe the details of finding such positions later,
also. For the remaining positions from the interval [L, x], we will label the
potentially rightmost end as x.

Let’s now look at all the operations our tournament structure must support:

a) It needs to be able to exclude a position x as the left end. In other words,
that it will not be possible in the future for it to be the left position for a value
to the right.

b) It needs to be able to set the rightmost position that can be the end of some
interval to a new value x.

c) It needs to be able to determine the current maximal value in an interval.

Therefore, the entire idea of the tournament is it to store for each position x, until
the current position p, what the rightmost position y was while x was still alive, or
the distance between y and x. All these operations are possible to achieve using
propagation. The tournament will store the leftmost alive element from the interval
in @ node, the current rightmost position for that interval and the largest distance
between the left and right position of the magical subarray. The propagation
operations of these values are not difficult to derive, and we leave that as an
exercise to the reader. What we still haven’t covered is finding the first larger value
and removing all larger values as unusable for the left end from the tournament.
We do this by maintaining two stacks while moving in the sweep, one to search for
the first smaller number to the left, the other to search for the first larger number
to the left. All humbers that are removed while searching the first smaller number
to the left will be exactly the ones we need to kill in the tournament are not
anymore possible left ends. The total complexity of the solution is O((Q + N) Ig N).

Necessary skills: sweep, monotonous stack
Category: data structures, stack

