Task BELA Author: Branimir Filipovi¢

In order to calculate the total number of points in one game of Bela, we need to
sum the points of each card in the game. To determine the number of points each
card is worth, we need two pieces of information: whether the card is in the
dominant suit (its suit is equal to B), and the value of the card’s symbol. Now all we
need to do is look up the card’s value from the given table. This can be done simply
using conditional statements.

Necessary skills: conditional statements, loop statements, string processing
Category: ad-hoc

Task PUTOVANJE Author: Dominik Gleich

The only important thing to do is to simulate Mislav’s movement and food
consumption if he starts his journey from every possible position and decides to
start eating from that point. When he starts eating, he will eat a fruit if it can fit
inside his stomach, otherwise he will not eat it and continue trying to eat other
fruits. Therefore, we need to calculate how much fruit he will eat if he starts eating
from the fruit on that position, from every position. The maximal obtained number
is the solution. The total complexity of this solution is O(n"2).

Necessary skills: arrays
Category: ad-hoc

Task PIANINO Author: Marin Tomic¢

Let's denote the keys already pressed as a,, ..., a,. We define an array of numbers
b,, ..., by in the following way:
b,=0
b,,=b +1ifa, >a,, i>1
b,,=b-1ifa <a_,i>1
b,, =bifa=a,i>1

Let's denote the partial sum of array b as p,. It is easy to see that the i'" note that
Mirka will press is exactly p, * K + a;.

If Mirka plays the i note of the song, it holds p, * K + a, = a.. If p, = 0, then the
accuracy of the i" note does not depend on K at all, otherwise it will be played
correctly if K is equal to (a,-a,) / p; (notice that the quotient must be a non-negative
integer).

Therefore, for each note for which p;, is not 0 there exists at most one good
candidate for K. All the candidates can be put in an array and then we can sort
them, find the one with the most appearances and choose that one as the
optimum.

The complexity of the solution is O(N Ig N) because of the sorting.

Necessary skills: combinatorics
Category: ad-hoc, mathematics

Task PAROVI Author: Mislav Balunovi¢

Let's denote the family of sets that have the partition located at index k as A,, and
the family of all
possible initial sets as X.

Then the solution is all sets from x\ UAI.
i=1

The inclusion-exclusion principle provides us with an efficient way of calculating the
size of the solution set. It holds:

n k
XN Ul =305 | 4y
1= Jj=

In order to calculate the cardinality of the required intersection, we need to count
how many pairings such that the partitions are located at certain k indices there are
(we are not interested about partitions at other locations).

That number is equal to 2%, where t is the total number of pairs that don't “cross
over” any partition location. The time complexity of this solution is O(2" * N). For
implementation details, consult the official solution).

Please note: A solution using dynamic programming also exists and is left as an
exercise to the reader.

Necessary skills: inclusion-exclusion principle, mathematics
Category: mathematics

Task KRUMPIRKO Author: Dominik Gleich

The solution worth 30% of points is trivial and implements precisely what is
required in the task: from all possible choices of divisions of potato bags in the
stores, which is O(27n), choose the one with the minimal product of average prices
where at least one half is of size L. The complexity of this solution is O(2”~n * n).
Let's now try to solve the task for all points.

Let’s denote the total price of the potatoes in the first store as ¢; and the total
number of potatoes as w,, and analogously in the second store as ¢, and w,, the
product of the average prices is equal to ¢,*c,/w,/w, Given the fact that the sum
of prices and the sum of the number of potatoes is constant, we can modify this
expression as ¢, *(c - ¢,)/(w,*(w-w,)). If we fix the parameter w,, we can notice
that this expression is minimal when ¢, is minimal as well. Now our task is to find
the minimal ¢, for each w, such that the first store contains exactly L or N - L bags
of potatoes. The minimal such ¢, is found using dynamic programming. Let f(n, w,
1) be the smallest price when choosing exactly | bags of potatoes out of the first n
bags of potatoes so that the chosen bags contain exactly w potatoes. The relation
in this dynamic is left as an exercise to the reader. For implementation details,
consult the official solution. The total complexity of the solution is O(wn”2).

Necessary skills: dynamic programming
Category: mathematics

Task SAN Author: Marin Tomic¢

Let tab[y] denote the number of occurrences of the number y in the table. We can
(not in an efficient way) calculate it using the following algorithm for each y from 1
to N:

for x from 1 to N:
tab[x] = tab[x] + 1
tab[x + rev(x)] = tab[x + rev(x)] + tab[x]

This algorithm is linear, but N can be up to 10'° so it is not efficient enough. It is
crucial to notice that the amount of numbers for which tab[y] > 1 is very small.
Let’s denote the humber of different numbers x such that x + rev(x) = y as cnt[y].

Notice that cnt[y] > 0 if and only if tab[y] > 1. Let’s denote the array of numbers
consisting of all the numbers for which cnt[y] > 0 as S and sort it ascendingly. The
values of tab[y] for these numbers can be calculated using the following algorithm:

for each x in S:
tab[x] = tab[x] + cnt[x]
tab[x + rev(x)] = tab[x + rev(x)] + tab[x]

This algorithm consists of |S| loop iterations. It is crucial to notice that the amount
of numbers in set S is relatively small (only a couple of millions) so the upper
algorithm is efficient enough in order to calculate the values tab[y] for each y for
which the value is larger than 1. For each other y it holds tab[y] = 1, so now we
actually have the value tab[y] calculated for each y, which enables us to efficiently
answer queries (using partial sums of the array tab). Notice that the indices in the
array tab are very big, but we don’t need the whole array so we will actually store it
in a map.

We are left to calculate the values of cnt[y] for all numbers. We will recursively find
all numbers y and the values cnt[y] for each y for which the value is larger than 0.
Let's see what happens when we add a 6-digit number with itself, only in reverse:

al az a3 a4 ab a6
+ a6 ab a4 a3 a2 al
cO0 bl+cl b2+c?2 b3+c3 b3+c4 b2+ch bl

Here c0, ..., ¢5 are 0 or 1 and denote the carrying digits, bl is (al+a6) modulo 10,
b2 is (a2+a5) modulo 10 and b3 is (a3+a4) modulo 10.

The values cnt[y] could be determined so that we fix the digits a1, ..., a6 in all
possible ways, but there are a lot of combinations for that. Another approach would
be to determine b1, b2 i b3, and c0, ..., c5 in all possible ways (therefore the sum is
uniquely determined) and calculate how many different selections of al, .., a6
results in exactly b1, b2 and b3 and c0, ..., c5. How can we do this? We will use a
recursive function gen which takes 4 parameters, their meanings described in the
following table:

pos means we are currently determining b

cl means that c,,, is equal to c,

c2

means that ¢, ., is equal to c2

num

the value of the current part of the sum al...aé + a6...al

Here is the pseudocode for function gen:

gen (pos, cl, c2, num):

if pos = 4:

(we have determined the whole sum and the number of ways

obtain it)

if ¢l != ¢2 return

(cl and c2 must be equal because they both represent c3)
increase cnt[num] by 1 and return

for pairs of digits (x1, x2):

(x1 and x2 determine Db, we are determining digits pos

6-pos+1l of num)

if ¢l = 1 and x1+x2 < 10 continue
if ¢l = 0 and x1+x2 >= 10 continue
bb = (x1 + x2) % 10

nnum = num

set digit 6-pos+l of nnum to bb + c2
set digit pos of nnum to bb + 1 and call
gen (pos+l, 1, x1+x2 >= 10, nnum)
(cl = 1 denotes that we want the carry digit)

set digit pos of nnum to bb and call
gen (pos+1, 0, x1+x2 >= 10, nnum)
(cl = 0 denotes that there is no carry)

to

and

The upper approach can be generalized for an arbitrary number of digits. The upper
recursion for a number of length L performs approximately 81%2 operations, which
is too slow for all points. It is crucial to note that we don’t need to iterate over all
pairs of digits, because it is sufficient to iterate over all possible sums and for each
sum know how many ways there is to obtain it. Then we perform approximately
19Y2 operations, which is fast enough for all points. We leave the details as an
exercise to the reader, but they can also be found in the official solution.

Necessary skills: recursion, map
Category: dynamic programming, mathematics

