

Task ZAMKA Author: Nikola Dmitrović

For each integer larger than or equal to L, we need to determine the sum of its
digits and check whether the sum is equal to given X. The search halts when we
first find such a number (N). For each integer less than or equal to D, we need to
determine the sum of its digits and check whether the sum is equal to given X. The
search halts when we first find such a number (M).

The solution is written in Python 3.x.

left = int(input())
right = int(input())
X = int(input())

for i in range(left, right + 1):

sum = 0
number = i
while i > 0:

 sum += i % 10
 i //= 10

if sum == X:
 print(number)
 break

for i in range(right, left 1, 1):

sum = 0
number = i
while i > 0:

 sum += i % 10
 i //= 10

if sum == X:
 print(number)
 break

Necessary skills: for and while loops, algorithm for summing the digits of a
number
Category: ad-hoc

Task MULTIGRAM Author: Mislav Balunović

Let there be given a string of length N.
We can iterate over all divisors K of number N and check whether it’s possible for a
string to consist of anagrams of length K.
In order to check this, we need to determine whether the substrings [1, K], [K+1,
2K], …, [N-K+1, N] are mutually anagrams.
It is sufficient to sort all these strings and check if they’re equal then.

Necessary skills: strings
Category: ad-hoc

Task PERICA Author: Dominik Gleich

We need to calculate how many times each number from the input appears as the
largest of K numbers in every combination. If we sort the numbers in ascending
order, we can see that this number is going to be maximal in an array of K
numbers if all other numbers are located to its left. Therefore, the ith number is
maximal the exact number of times as the number of ways to choose K-1 numbers
out of the first i numbers. If we denote the number of ways to choose K numbers
out of N numbers as f(n, k), then it is easy to see that f(n, k) = f(n-1, k) + f(n-1,
k-1).
Using this relation, we can calculate each f(n, k).
The solution is therefore the sum of the product of the corresponding f(i, k-1) i v[i],
where v[i] is the value on that location.

Necessary skills: combinatorics
Category: ad-hoc, mathematics

Task POPLAVA Author: Mislav Balunović

Let's first notice that the maximal amount of water contained in a histogram with N
columns is exactly (N - 1) * (N - 2) / 2.
The configuration to achieve this is, for example, [N, 1, 2, …, N - 2, N - 1].

The main idea of the solution is to remove several columns from the middle and put
them in descending order on the side. Then the total amount of water would
depend only on the columns left in the middle. A column of height h in the middle
would contribute with N - 1 - h water.

Let's assume that we left columns of height h1, h2, …, hk in the middle.
If we use the notation vi = N - 1 - hi, then we have reduced the problem to finding
a subset of numbers {1, 2, …, N - 2} which sum is precisely X.
Such numbers can be found using a greedy algorithm. The proof is left as an
exercise to the reader.

Necessary skills: greedy, mathematics
Category: mathematics

Task OOP Author: Dominik Gleich

In order to solve the task, let's first try to see how we can compare a pattern and a
word. Given the fact that ‘*’ is replaced by any series of lettters, and the letters to
the left and to the right of ‘*’ remain unchanged, everything to the left of ‘*’ must
be a prefix of the word which we’re comparing to, and everything to the right must
be the suffix of the word we’re comparing to. Therefore, if we denote everything to
the left of ‘*’ as L and everything to the right as R, it is sufficient to check whether
L is a prefix of the word, R is the suffix of the word, and that the sum of lengths of
L and R is less than or equal to the length of the word. In the case where this does
not hold, an overlap between the prefix and suffix could occur, i.e. (“ab*ba” s
“aba”, “ab” i “ba” share letters in “aba”). Now we can solve the task for 40% of
total points, if we use a quick comparison between strings using hashing.
The complexity of this solution is O(NQ).

Let's now solve the task for all points. First we construct a prefix tree out of all
words from the input. A node in the tree that corresponds to the prefix of length p
of the word X of length L will be used to store the hash value of the suffix of length
L - p of the word X. After we’ve constructed this structure, let's try to see what
query we need to answer in order to find out the number of words that correspond
to the pattern. Let’s denote the part of the pattern to the left of ‘*’ as L. The answer
to the query is actually the number of hashes located in the subtree of prefix L that
are equal to the hash of the right part of the pattern (the part after ‘*’). How can
we answer this question quickly?

If we use DFS to traverse the prefix tree and denote the time we first visited the
node with Dt and the time we returned from node t to its parent with Ft, it is easy
to see that all nodes x that are located in the subtree of t have Dx in the interval
Dt, Ft.

If we group the same hashes from the prefix tree in a structured sorted by Dx of the
corresponding nodes, we can, for those hashes, answer how many hashes H there
are in the subtree of node t. We do this by querying the structure for hash H how
many Dx from the interval Dt, Ft there are. If we use a map <int, vector<int>> as
the structure, we can easily support the aforementioned query with a simple binary
search over the corresponding vector for a given hash. If S is the number of
characters in the input, the total complexity of the solution is O(S lg S).

Necessary skills: dfs, prefix tree, rolling hash, binary search
Category: data structures

Task PODNIZOVI Author: Mislav Balunović

Let’s first observe the following algorithm:

S = {} // current set of subarrays

for i in {1..K}
 x = lexicographically smallest subarray from S
 s.remove(x)
 print hash(x)

foryin{subarrayscreatedbyaddingoneelementtotheendof
x}
 s.add(x)

Therefore, we iterate over subarrays ascending lexicographically and after we
process a subarray we add all subarrays created from it into the processing set.

We will make a series of optimizations of the given algorithm.
Let’s define the children of the subarray as all the subarrays created by adding one
element to the end of the current subarray.

1) Notice that there is no need to add more than one child of a subarray into the
set. Only when we process a child, do we add the next lexicographical child
of a subarray into the set.

2) When we are searching for the next smallest lexicographical child of a
subarray, we can do this quickly by using a Fenwick tree or a tournament
tree.

3) The comparison of subarrays from the set can be done quickly if we compare
prefixes of the size 2k.

The time complexity of the algorithm is O(N lg2 N).
For implementation details, consult the official solution that implements the
described algorithm. An alternative solution uses a recursive processing of
subarrays, which results in somewhat simpler code.

Necessary skills: tournament tree
Category: ad-hoc

