

Task YODA Author: Nikola Dmitrović

In 30% of test cases, the numbers ​N and ​M were composed of three digits, so the
task could be solved by determining all the digits, comparing them and creating
new numbers. The task could also be solved by observing the numbers as strings.
Here we will observe the numbers as numbers.
The solution is a combination of the algorithm for determining the digits of a
number and the algorithm for creating a number. Since we don’t want to think
about the number of digits, we can assume that there are at most 10 of them, but
we can also use a conditional loop. There was one trick in the task. The solution
that outputs “YODA” in the case when the new value of the number is equal to zero
is not a good solution because there are cases when the number is zero, and
“YODA” shouldn’t be output (i.e. when the zeroes appear in the same position of
digits in the number). Let us notice that the given word will be output only when
the new number hasn’t been modified in the program.

Solution: (written in Python 3.x)

N = int(input()); M = int(input())

newN = newM = 0 # new numbers we’re creating
powN = powM = 1 # the powers we use when creating the numbers
flagN = flagM = 0 # the flag to keep track if the number has been
modified

for i in range(10):

znN = N % 10; N = N // 10
znM = M % 10; M = M // 10

if znM >= znN and M > 0:

 newM = znM * powM + newM
 powM = powM * 10
 flagM = 1 # there has been a change in number newM

if znN >= znM and N > 0:
 newN = znN * powN + newN
 powN = powN * 10
 flagN = 1 # there has been a change in number newN

if flagN == 1: print(newN)
else: print("YODA")

if flagM == 1: print(newM)
else: print("YODA")

Necessary skills: ​loop, digit-searching algorithm, digit-creating algorithm
Category: ​ad-hoc

Task HAN Author: Ivan Paljak

If we simulate the process described in the task by constructing a word that
consists of the letters Dominik is saying, and for each ​UPIT command we count the
required letters in the word, we are left with an algorithm of time complexity
O(Q*N), which is sufficient for 40% of total points. An additional 20% of points
could have been won by keeping track of how many of which letter appeared so far
while constructing the word. Now it is possible to answer each ​UPIT command in
O(1).

Finally, in order to completely solve the task, we must notice that, if undisturbed
with a command, after first N%26 spoken letters, Dominik will say each letter
exactly N/26 times (he will be stuck in a cycle of length 26), where % is the modulo
operator, and / is the integer division operator. Using this property, we can
simulate each command in constant time. For implementation details, consult the
official solution.

Necessary skills: ​strings, cycles, modular arithmetics
Category: ​ad-hoc

Task DEATHSTAR Author: Dominik Gleich

It is necessary to notice that the construction ​a​i ​= bitwise or of all ​m​ij ​for each ​j is
sufficient to meet all the requirements from the matrix. The proof of this fact is left
as an exercise to the reader.

Necessary skills: ​bitwise operations
Category: ​ad-hoc

Task CHEWBACCA Author: Antonio Jurić

The simplest solution is to construct an entire graph in memory and for each query
run a DFS traversal of the tree that will calculate the distance between two given
nodes. A DFS traversal will correctly calculate the shortest path because the given
graph is a tree, which means this path is the only path between these two nodes.
The complexity of this solution is O(​Q * N​).

A better solution also constructs the graph in memory, but before answering the
queries it calculates the table of the lowest common ancestor. Using this data we
can easily calculate the distance between two given nodes:

depth(​x​) - depth(lca(​x​, ​y​)) + depth(​y​) - depth(lca(​x​, ​y​)), ie. :
-2*depth(lca(​x​, ​y​)) + (depth(​x​) + depth(​y​)).

The complexity of this solution is O(​Q ​* log[​k​](​N​)).

For the maximal possible ​N from the task, the previous solution wouldn’t work
because of the too big space complexity: the table of the lowest common ancestor
is too large. But, given the regular structure of the tree, we don’t need to store the
table of the lowest common ancestor in memory, because that information can be
calculated on the spot. Let us enumerate the nodes from ​0​. Then the i​th child of
node ​x​ can be calculated using the formula:

x​*​K​ + 1 + ​i​, ​i​ ∈ [0, ​K​-1],
and the father of node ​x​:

floor((​x​ - 1) / ​K​),
where ​K is the order of the tree. These formulas enable us to efficiently calculate
the lowest common ancestor using binary search. The time complexity of this
solution is O(​Q * log​2​[​k​](​N​)), whereas the space complexity is constant. In the
source codes there is a somewhat simpler solution with complexity O(​Q *
log[​k​](​N​)) that does not use binary search.

Necessary skills: ​DFS, lowest common ancestor (LCA), binary search,
mathematical analysis
Category: ​graph theory

Task GALAKSIJA Author: Mislav Balunović

Let us choose an arbitrary node ​r​ to be the root of some tree. Let us denote with ​p​x

the total XOR of all the curiosities on the path from node ​r​ to node ​x​. It can be
easily seen that a pair of planets ​x​, ​y ​is boring if and only if it holds ​p​x​ ​XOR ​p​y​ = 0
⇔ ​p​x​ ​= ​p​y​.

Let us notice that we can “reverse” the input data so, instead of destroying the
paths, we can add them.

For connecting the components we will use the union find algorithm where we will,
for each component, remember its root, size and, additionally, a hash map that
remembers the number of times ​p​x​ appears in the component.
When we need to connect two components, the newly created component is rooted
in the root of the larger component. Now we must traverse the entire smaller
component (i.e. using the DFS algorithm) and correct the values in the larger
component’s hash map.

The time complexity of this algorithm is O(N lg​2​ N).

Necessary skills: ​union find, dfs
Category: ​graph theory

Task ENDOR Authors: Ivan Paljak, Mislav Balunović

Let us observe two consecutive chameleons moving to the right and are located at
coordinates ​x​1​ and ​x​2​, and a chameleon at the coordinate ​x​L​ moving to the left.
Between the collision with two chameleons moving to the right, he will pass
(​x​2​ ​+ ​x​L​) / 2 - (​x​1​ + ​x​L​) / 2 = (​x​2​ ​- ​x​1​) / 2 meters.
We can see that the distance traveled doesn’t depend on the coordinate of the
chameleon moving to the left.

The task is further solved using dynamic programming.
Let f(​i​, ​c​) be an array of length ​K ​that denotes the distance traveled in each color a
chameleon colored in​ c​ moving to the left will take in consecutive collisions if it had
just collided with a chameleon ​i​ moving to the right.
Using the aforementioned statement, we can easily calculate the value of function f.

Finally, for each chameleon moving to the left, we calculate:

1) distance traveled until the first collision;
2) distance traveled between consecutive collisions (calculated using f);
3) distance traveled from the last collision to the end

The time complexity of this algorithm is O(N * K^2).
For implementation details, consult the official solution.

Necessary skills:​ mathematics, dynamic programming
Category: ​dynamic programming

