
 

Task POT Author: Nikola Dmitrović 

 
First we need to observe how we can determine the value of an expression .basepot  

We can determine this by using a predefined function in a programming language of 
choice (i.e. function pow(base, pot) in Python) or by consecutively multiplying the 
number ​base​ with itself ​pot​ times. Another problem is, given ​P​, to determine the 
value of ​number ​(the result of P modulo 10) and the value of ​pot​ (the result of 
integer division of P by 10). 
 
Solution (written in Python 3.x): 
N = int(input()) 
 
total = 0 
 
for i in range(N): 

P = int(input()) 
 

pot = P % 10 
base = P // 10 

 
power = 1 
for i in range(pot): 

      power *= baza 
 

total += power 
 
print(total) 
 
Necessary skills:​ decision statements, repeat statements, algorithm for 
determining digits 
Category: ​ad-hoc 
 
 
  



 

Task ESEJ Author: Adrian Satja Kurdija 

 
In this task, we needed to find a large enough number of distinct words. How can 
we, for instance, generate 50 000 different words? Fortunately, there are many 
ways to do this. 
 
One solution is to notice that it is very easy to output a sufficient number of 
different ​numbers​. For example, we can output them sequentially: 1, 2, 3, …, and it 
is possible to transform these numbers to ​words​ by, for example, transforming 
digits to letters using the key 0 -> ‘a’, 1 -> ‘b’, 2 -> ‘c’, and so on. For instance, the 
number 451 is transformed to the word “efb”. If we use this way to transform every 
integer from 1 to ​B​, all given words are distinct because the initial numbers are also 
distinct. 
 
If we hadn’t thought of this solution, we could have output ​B ​words by randomly 
choosing​ ​letters per word (using a function such as ​rand()​ in C/C++ or the module 
random​ in Python). This approach will be valid because all given words will be 
distinct with a huge probability. 
 
Necessary skills: ​strings 
Category: ​ad-hoc 
 
  



Task MOLEKULE Author: Mislav Balunović 

 
The key observation in this task is to notice that we can always construct the               
solution so that the longest path an impulse has to travel is 1. Since the graph of                 
molecules is a tree, we can color the molecules in two colors (i.e. black and white)                
using the dfs algorithm so that there are no two molecules of the same color that                
are connected with a covalent bond. Now we must direct each covalent bond so              
that it points from the white molecule to the black one. It is clear that a path longer                  
than 1 does not exist in the newly created graph. 
Notice that the claim can be generalized to any bipartite graph. 
 
Necessary skills: ​dfs 
Category: ​graph theory 
 
 
  



 

Task SLON Author: Dominik Gleich 

 
The condition from the task is that the expression is a first degree polynomial of the 
form ​ax​ + ​b​. Let f(​x​) = ​ax​ + ​b​. If we calculate the expression in point 0, we will 
see that f(0) = ​b​. If we calculate it in point 1, we will see that f(1) = ​a​ + ​b​. This 
gives us values ​a​ and ​b​. We are left to figure out how to calculate the minimal 
value of ​x​ such that ​ax ​+ ​b​ = ​p​ (mod ​m​). Given that ​m​ <= 10​6​ , we can iterate 
over all values of ​x​ until we find the minimal value that satisfies the upper 
equation. We are left to figure out how to calculate the expression in point 0 and 
point 1. One of the ways we can do this is using the command ‘eval’ in Python. 
Another way is to parse the expression from infix to postfix notation using the 
“shunting-yard” algorithm. 
The official solution implements another approach where the expression is 
converted to postfix notation and then the addition, multiplication and subtraction is 
performed over polynomials with maximal degree of 1 and, finally, the same 
equation of the form ​ax​ + ​b​ = ​p​ (mod​ m​) is solved. 
 
Necessary skills: ​stack, queue 
Category: ​ad-hoc, postfix, infix 
 
 
  



 

Task NEKAMELEONI Author: Mislav Balunović 

 
We will describe a “divide and conquer” algorithm that, given an array ​A​ of length 
N​, finds the shortest subsequence that contains all numbers from 1 to ​K​. 
 
solve(​T​): 

L​ = left half of array ​T 
R ​= right half of array ​T 
X​ = solve(​L​) 
Y ​= solve(​R​) 
Z​ = the shortest subsequence that contains all numbers from 1 to 

K, and is comprised of the suffix of array ​L​ and the prefix of array 
R 

return min(​X​,​ Y​, ​Z​) 
 
If we can calculate the value ​Z​ in the complexity O(length of array ​T​), then the 
algorithm’s complexity is O(​N​ lg ​N​). 
 
How to determine the value ​Z​? For each suffix of the array ​L​, we will calculate a 
bitmask that describes a set of numbers that is in that suffix (​K​ <= 50 so that 
bitmask will be a single long long). We will do the same thing for each prefix of 
array ​R​. Now we want to find two bitmasks whose binary or is equal to 2​K​-1, and 
the sum of the lengths of the corresponding suffix and prefix is minimal. Notice that 
there are at most ​K​ interesting bitmasks from the left and from the right side, so 
we can do this in O(​K​2​) by trying out all pairs of bitmasks. We can use the 
“monotonous” property of the bitmasks so we can achieve the same result in O(​K​). 
 
Nevertheless, this is not quick enough because we have ​M​ queries that need to be 
answered. 
 
We will construct a tournament tree where each node stores “interesting” sets of 
bitmasks for prefixes and suffixes of its interval and the shortest subsequence that 
contains all numbers from 1 to ​K​ in its interval. Then the merging of nodes in the 
tree actually corresponds to the step of the aforementioned algorithm. When we 
modify a number in the array, we need to recalculate the values in O(lg ​N​) nodes, 
so the complexity of a single change is O(​K​ lg ​N​), and the total complexity is O(​KN 
lg ​N​ + ​KM​ lg ​N​). 
 
For implementation details, consult the official source code. 
 
Necessary skills: ​divide and conquer algorithms, tournament tree 



Category: ​data structures 
 
 
  



 

Task DOMINO Authors: Adrian Satja Kurdija, Mislav 
Balunović 

 
It is clear that minimizing the sum of visible fields is equivalent to maximizing the 
sum of covered fields. A greedy algorithm (“take the largest domino, delete it, 
repeat”) already fails on the second sample test. Nevertheless, in order to solve this 
problem, it is sufficient to only observe a certain number of dominoes that are the 
best or, in other words, largest considering the sum of their fields. 
 
What exactly is that number of dominoes? Let us notice that each domino overlaps 
with at most 6 other dominoes. That means that after taking K-1 dominoes, we’ve 
“crossed out” 7(K-1) dominoes in total, so for the last domino it clearly pays off to 
take one of the best 7(K-1) + 1 dominoes. Since the order of choosing dominoes is 
not important, each chosen domino can be the last one, which means that each 
domino from the optimal choice is one of the best 7(K-1) + 1 dominoes. 
 
For K <= 5 that number is less than thirty, so trying out every possible combination 
(from that set of the best dominoes) is quick enough. For K <= 8, the number of 
dominoes to observe reaches 50. Since the number of all possible choices is too 
large in this case, we will use the ​meet in the middle​ approach: we will split the 
observed set into two parts and, for each of them, observe the possible choices 
inside it. 
 
Let us first construct a graph where the nodes are dominoes, and two dominoes are 
connected with an edge if they don’t overlap or, in other words, if they can be taken 
at the same time. Therefore, we need to find a ​clique​ (a complete subgraph, i.e. a 
set of nodes where each two are connected) of size K where the sum of all the 
nodes (the dominoes’ values) is maximal. Each subgraph is observed as a bitmask, 
a binary number where 1s represent the chosen nodes. 
 
Let us split the graph into two parts so that the first one contains A nodes and the 
other B nodes (sizes A and B will be determined later). In all possible ways, let’s 
assume that we will choose D dominoes of the required clique from the first part 
and K - D dominoes from the second part of the graph. 
 
For a fixed D we do the following: 

● In the first part of the graph, for each subgraph ​mask​ we calculate ​dp[mask] 
that gives us the maximal sum of nodes in its subclique of size D. 

○ How can we do this? If the subgraph is of size D, we check whether it’s 
a clique, and if it is, we sum up the nodes. If the subgraph consists of 
more than D nodes, then 



dp[mask] = max{ dp[submask] } 
for all subgraphs ​submask​ obtained by removing one node (binary 
one) from the subgraph ​mask​. 

● In the second part of the graph, for each clique of size K - D, we search for 
all the nodes in the first part that are connected to all the nodes from the 
chosen clique -- these nodes from the first part comprise a subgraph ​mask 
and we want to know its best subclique of size D, which is stored in 
dp[mask]​. 

● To summarize: for this D, we maximize ​sum(clique) + dp[mask]​ for all 
cliques in the second part of size K - D and its corresponding “friendly” 
subgraphs ​mask​ from the first part. 

 
The final solution is, naturally, the maximum for all D = 0, 1, …, K. Finally, how big 
should the parts A and B be? Since in the first part we are observing all subgraphs, 
and in the second only those of size K - D, the first one should be smaller: in the 
official solution, A = 20, B = 30. The analysis of this algorithm’s complexity is left 
as an exercise to the reader. 
 
Necessary skills:​ meet in the middle, dynamic programming, graphs 
Category: ​graph theory 


