

Task MARKO Author: Dominik Gleich

The simplest solution for this task is to transform each word from the dictionary
into a sequence of keypresses that result in the given word. Therefore, we
transform each word into that sequence of keypresses, i.e. “ana” -> “262”.
Finally, we simply count how many “transformed” words from the input are equal to
the input sequence of keypresses.

Necessary skills: arrays, strings
Category: ad-hoc

Task GEPPETTO Author: Dominik Gleich

In this task, we need to count how many combinations, out of the 2N possible, meet
the requirements for combining the ingredients.

To begin with, for each ingredient i, we can create an array of ingredients j that
cannot be combined with that ingredient.
After this, we solve the task by recursively looping through the ingredients and
trying to do the following:

a. Choose the ingredient - only if we haven’t already chosen an ingredient that
cannot be combined with the current one.

b. Do not choose the ingredient.

For implementation details, consult the official solution.

Necessary skills: arrays
Category: ad-hoc, recursion

Task ARTUR Author: Ivan Paljak

Let us first notice that there is always going to be at least one stick that can be
removed from the table in a manner that follows the rules of the game. In other
words, a solution always exists.

The first step towards solving the task is answering the question: “Is stick B in the
way of moving stick A?”. We observe the projections of the corresponding line
segments on the x-axis. A projection of a line segment with ending points (x1,y1)
and (x2,y2) corresponds to the line segment with ending points (x1,0) and
(x2,0). If the observed projections don’t have points in common, then the removal
of sticks A and B is mutually independent. Otherwise, let (x’,0)denote one of the
mutual points of two projections. Let TA denote the intersection of line x = x’ with
stick A, and TB denote the intersection of that line with stick B. Stick B is in the
way of moving stick A if TA is located above TB. Therefore, the answer to the given
question is obtained in O(1).

Let us imagine that each line segment corresponds to a node in a directed graph
and that there is an edge from node A to node B if and only if stick B is in the way
of moving stick A. Now we need to find a sequence of nodes so that it holds for
each directed path between a and b that node a is located before node b in that
sequence. This order of nodes is called topological sort and it is found using a
slight modification of depth-first search (DFS). More precisely, after we have
expanded from one node to all its neighbours, we add that node to the end of the
sequence. This way, we have made sure that all line segments in the way of
moving the current one are removed before we remove the current line segment.

The time complexity of this algorithm is O(N2) because of building the graph. The
topological sort itself is as efficient as a DFS traversal of the graph. For
implementation details, consult the official solution.

Necessary skills: geometry, topological sort
Category: graph theory

Task SAVEZ Author: Zvonimir Medić

In order to solve this task, two things need to be noticed:
1. If a string xi is a prefix of string xj, and xj prefix of string xk, then string xi is

a prefix of string xk (i < j < k).
2. If a string x is a suffix of string y, then string x^R is a prefix of string y^R,

where a^R denotes string a written backwards.

Now it is sufficient to build a prefix tree in a slightly modified form:

1. The alphabet doesn’t consist of 26 letters, but 262, because each pair of
letters represents a single “letter”.

2. When inserting a word in the tree, the first letter in the pair is taken from the
beginning, the other from the end.

3. Each node stores the best solution for that “prefix” (1 +
max(node_children)).

If we start from the end of input data, we’ve changed the task from expanding to
contracting one of the existing strings. By doing this, we ensure that the solution
takes into account the order of words from the input data. The time complexity of
this solution is O(total_length_of_words).

Necessary skills: prefix tree, dynamic programming
Category: ad-hoc

Task VUDU Author: Dominik Gleich

In this task, we need to find the number of consecutive subsequences such that the
average value is >= P.
To begin with, it is important to notice that, if we subtract the value P from each
number, we have reduced the task to finding the number of consecutive
subsequences such that their sum is non-negative.
Therefore, now the task is to find the number of consecutive subsequences that
have the sum of values non-negative in the sequence of numbers. We can do this in
two ways, one of which will be described here, while the official solution implements
the other.

Let pref(x) be the sum of the first x elements in the transformed sequence. It is
easy to see that the sum of elements in the interval [L, R] = pref(R) - pref(L - 1).
Because we are searching for a number in the interval [L, R], we can calculate how
many positions L there are so that the sum in the interval [L, R] is non-negative
for each R. Therefore, for each pref(R) we ask how many pref(L - 1) there are such
that L <= R and pref(R) >=pref(L - 1). If we imagine that we are moving from left
to right in the array, for each R we need to be able to answer how many pref(L-1)
<= pref(R), L <= R there are.
Because we only want to know about the relative order between the prefix sums,
we can hash the value of each prefix sum and convert it to a single number from
the interval [0, N>, depending their relative order. The hashing needs to be
implemented in order to efficiently answer to queries using a data structure.

The simplest data structure to implement that enables inserting number X and
querying how many numbers smaller than Y there are is the Fenwick tree data
structure. For details about this data structure, consult
http://wiki.xfer.hr/logaritamska_tutorial.

Necessary skills: data structures
Category: ad-hoc, sweep

Task DRŽAVA Author: Mislav Balunović

There are two conceptually different solutions that are both based on the following
observation:
If there is a county with at least K cities in it, the prime minister will be happy. The
proof of this relatively simple claim is obtained by using Dirichlet’s principle and is
left as an exercise to the reader.

First solution:

Let us notice that we can use binary search by distance D if for a fixed D we know
how to check if there is a layout of roads such that the prime minister is happy.

For each city, let us define a rectangle (so-called
“bounding box”) that contains all points with the
smaller x coordinate, which x and y coordinates
differ for at most D from the city we are currently
observing.

It is sufficient to notice that, if there are more 8K
cities in that rectangle, then there exists a county
with at least K cities. The reason for this is that a
rectangle can be split into 8 smaller squares of
side length D/2. All cities inside the smaller
square are in the same county and, given the
aforementioned lemma, we know that we can
make the prime minister happy.
Additionally, all cities with distance to the current
city smaller than D are located inside the
rectangle.

http://wiki.xfer.hr/logaritamska_tutorial

Let us sort the cities by their x coordinate and process them in this order using the
sweep line technique (http://wiki.xfer.hr/sweep_line/).

When processing a city, we insert it into a binary tree where the cities are sorted by
their y coordinate. We remove from the tree all cities which x coordinate differs
from the x coordinate of the current city for more than D.
Now we can efficiently iterate over all cities inside the rectangle and connect with
roads the cities that are distant for at most D from the current city. If at some point
we notice that a rectangle contains more than 8K points, we can conclude that we
can make the prime minister happy and we don’t need to check any further.

After that, we perform a DFS algorithm in order to form counties and, in the end,
use dynamic programming to check if there is a subset of cities in a county that has
the sum divisible by K.
The time complexity of this algorithm is O(N * K * lg D_MAX) where D_MAX is the
maximal possible value of number D.

Second solution:

This solution takes advantage of the fact that, for each city, it is enough to know of
its K closest cities.
(That fact is obtained directly from the first lemma.)
The solution consists of two parts:

1.) Finding the K nearest neighbours for each point.
2.) Forming counties and checking if the newly made county contains the

required subset of cities.

We process the cities from left to right and use P to denote the minimal P such that
we have found a city with at least K neighbours so far that are distant for at most
P. For the current city we calculated the same rectangle from the first solution, go
over all points in the rectangle and find the Kth nearest point from the rectangle and
change the value P. Notice that the rectangle consists of at most 8K points using a
similar argument to the one from the first solution.
This part of the solution is of complexity O (N * K + N lg N).

When we have found N * K potential roads for each city, we sort these roads by
length and connect them respectively. The counties are maintained using the union
find data structure (http://wiki.xfer.hr/union_find/). When connecting two cities
from different counties, we go over all the cities from the smaller county, insert
them into the larger county and calculate the remainders mod K from the subsets
of the newly formed county. With careful implementation, this part of the solution is
of complexity O(N * K * lg N) if we use the algorithm that joins the smaller
component to the larger one in union find.

http://wiki.xfer.hr/sweep_line/
http://wiki.xfer.hr/union_find/

For implementation details, consult the official solution.

Necessary skills: sweep line, dynamic programming, Dirichlet’s principle
Category: sweep line

