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Task ČVENK Author: Ante Đerek  

 
In this task, we have to determine the minimum total number of steps             
necessary in order for all the tourists to meet in the same field of the labyrinth. 
 
According to the image, it seems that the labyrinth is shaped as a tree, and if                
we set field (0,0) as the root, field (x,y) has a depth of x + y. This isn’t difficult                   
to prove: 
The case where one of the coordinates is 0 is trivial (father of (x,0) is (x - 1,                  
0), simmetrical for y). 
Let’s denote the lowest active bit of a positive integer x with lobit(x). Notice              
that, because x & y == 0, lobit(x) != lobit(y). Let’s assume that lobit(x) <               
lobit(y) (the other case is symmetrical). 
 
We can visualize it this way: 
x: ???????????0000...010...000 
y: ???????????1000...000...000 
 
Let’s observe numbers x - 1 and y - 1: 
x - 1: ???????????0000...001...111 
y - 1: ???????????0111...111...111 
 
Now it is clear that (x - 1) & y == 0 and x & (y - 1) != 0, so the father of field                         
(x, y) in the tree is field (x - 1, y), which matches our expectations. If lobit(x)                 
> lobit(y), the father is (x, y - 1). Therefore, it really is a tree. 
It needs to be noted that something stronger holds. Specifically, for lobit(x) <             
lobit(y), (x - z) & y == 0 for z from [0, lobit(x)], the argument is similar as                  
for x - 1, and this will be useful later for quick calculation of the kth ancestor. 
 
The typical next step is to implement the function lca(x1, y1, x2, y2) that finds               
the lowest common ancestor of fields (x1, y1) and (x2, y2). First, we will              
implement an auxiliary function kth_ancestor(x, y, k) that finds the kth in line             
ancestor of field (x, y). We can implement it recursively: 
kth_ancestor(x, y, k): 

for k == 0: return (x, y) 

for x == 0: return (x, y - k) 

for y == 0: return (x - k, y) 

for lobit(x) < lobit(y):  

return kth_ancestor(x - min(lobit(x), k), y, k - min(lobit(x), k)) 

for lobit(x) > lobit(y):  

return kth_ancestor(x, y - min(lobit(y), k), k - min(lobit(y), k)) 

 
Using this function, we can implement the function lca using the classical            
algorithm of jumping on powers of 2, in other words, binary search. For             
details, consult the official source code. 
 
From now on, we will denote the fields with letters, instead of coordinates. 



Notice that when we have the function lca we can easily calculate the distance              
between two nodes a and b in the tree as depth(a) + depth(b) - 2 *                
depth(lca(a, b)). 

 
 
We are left with finding a node where the tourists will meet in. This is a typical                 
tree problem and generally the idea is this: let’s assume that we are located in               
node a. Let node b be the neighbour of a, let’s observe the edge a - b. Let V(a,                   
b) be the number of nodes in the subtree seen from the side of node a (when                 
we are looking at the edge between a and b, image!), and V(b, a) the same for                 
node b. Then b is a better choice for the meeting if and only if V(b, a) > V(a,                   
b). Since V(a, b) + V(b, a) = N, it follows V(b, a) > N / 2. It is clear that node                      
a is optimal only if for each of its neighbours b it holds V(b, a) <= N / 2. The                    
reader is left with making sure that this condition is sufficient too. 
 
Let’s get back to the tree from the task (remember, it’s rooted). We will              
denote the number of tourists in the subtree of node a in our tree with               
tourists(a). Now we are looking for node a such that tourists(a) >= N / 2 (so                
that in the part of the tree above a there is no more than N / 2 tourists) and                   
tourists(b) <= N / 2 for each child b of a. If we take an initial node, we can                   
easily use binary search and the function kth_ancestor to find the first ancestor             
a such that tourists(a) >= N / 2. If all of its children have less than or equal to                   
N / 2 tourists in their subtrees, we have found the solution. Checking of the               
number of tourists in a subtree can be done in O(N * log(C)) by examining for                
each node with a tourist if it’s a descendant of the node we’re considering (by               
calling the function kth_ancestor with the depth difference). Given the fact that            
in the subtree of the optimal node there are at least N / 2 tourists, we can                 
randomly choose one of N nodes with tourists as the initial node for binary              
search. The expected number of initial nodes we will need to check is 2. 
 
After we find the optimal node, we are left with summing up the distances of               
tourists to our node. 
 
The complexity of function kth_ancestor is O(log(C)), where C is the maximal            
value of coordinates of a field, so the complexity of finding the optimal node is               
O(N * log(C)^2), log(C) for binary search and N * log(C) to check the node               
(and the expected number of tries is 2). 
 
The complexity of function lca is O(log(C)^2), log(C) for binary search, log(C)            
to call function kth_ancestor. We have to call it N times in order to calculate all                
distances, so the complexity of this part, as well as the total algorithm             
complexity, is O(N * log(C)^2). 



 

Task KOVANICE Author: Ante Đerek 

 
Let’s first imagine there isn’t any weighings in which both sides are equal. We              
will construct a graph where each weighing a < b creates an edge a -> b. The                 
constructed graph is a directed acyclic graph (DAG), because if we had cycles,             
that would mean that the test data isn’t consistent. 
 
It is clear that this graph cannot have a chain longer than N because that               
would mean that there are more than N types of coins. The coins located on               
the chain of length N have their weight determined unambiguously and it is             
known that the first coin in the chain is K1, the second K2 and so on until the                  
Nth coin which is KN. The coins not located in any chain of length N cannot                
have their weight unambiguously determined because that means there are          
more types of coins than the number of coins in the chain, and therefore there               
are more possible layouts satisfying the conditions from the chain. 
 
Now it is also possible to process the weighings in which both sides are equal.               
All coins of equal weight can be combined in one node and run the previously               
described algorithm on this graph. It is necessary to remember which coins are             
in which node so we can output the result for each of them. 
  



 

Task OGLEDALA Author: Ivan Katanić  

 
The first subtask can be solved so that for all M fields we calculate when they                
will be occupied and then easily answer queries. This can be simply done in              
time complexity of O(N + M lg M + Q) and space complexity O(M). 
 
The second subtask has too many washbasins to apply this approach.           
However, the number BQ is small so we can simulate the arrival of all the               
ladies up to lady BQ. When there are X ladies occupying the washbasins, there              
are at most X+1 segments of continuous unoccupied washbasins. These          
segments can be represented as ordered pairs (beginning, length) and keep           
them in a priority queue appropriately sorted so that the peak is always the              
leftmost longest segment. If that segment is represented by pair (P, D), the             
next lady coming will occupy washbasin P+(D-1)/2 (integer division) and new           
segments (P, (D-1)/2) and (P+(D-1)/2 + 1, D/2) will form. For the described             
procedure, it takes N + 2 * BQ pushing into the priority queue and BQ popping                
so the time complexity of the algorithm is O(N + BQ lg (N+BQ)), and memory               
O(N + BQ). 
 
The third subtask requires a different approach because we can’t simulate the            
arrivals of all ladies. Can we at least determine the size of the block which the                
Xth lady is coming to, for an arbitrary X? Of course we can! 
 
To begin with, we need to calculate how many blocks of which size will form               
during the arrival of all the ladies to the restroom. When we know that, it’s               
easy to find the answer to our question because the ladies choose the blocks in               
descending order. 
 
How to calculate how many blocks will form of which size? Let’s observe the              
state of the washbasins after the arrival of the first N ladies: 
 

.X.....X.. 
 
In the upper example we have segments of empty washbasins of length 1, 5              
and 2. Let’s call these segments main segments. As the ladies arrive, they             
will be split into smaller and smaller segments. It is crucial to notice that the               
main segment of size D will split into at most 2 lg D segments of different                
lengths. For example, for D = 8, we have 4 different lengths: 
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For each main segment, we can easily calculate all the different segment            
lengths that will appear when it’s splitting and how many of them there are.              
When we calculate this for each main segment, we can construct an array of              
triplets (length, quantity, of which main segment) that describe all the           
segment lengths that will ever appear. 
 
If we sort this array descending by the length of segment and from left to right                
by the main segment, we get even more than we asked. Now we can also               
determine the length of segment L which the Xth lady will “hop into”, but also               
the main segment which that segment is going to belong to. 
 
We are left with determining where in the main segment the required segment             
is going to be located. From the large sorted array we can find out the ordinal                
number of the required segment (by the time of occurrence) among all the             
segments of the same length from that main segment. Let’s denote its ordinal             
number with K. Now we can forget about all the other main segments and              
focus on the division of one main segment. 
 
Let’s imagine the first division of the main segment (the arrival of the first lady               
in it), and it splits into two parts. All segments of length L that will ever appear                 
in the left part will be chosen before all segments of length L from the right                
part. Therefore, if there are at least K segments of length L in the left part, we                 
discard the right part and repeat the same procedure. If there are less than K,               
we denote that number with P, discard the left part and look for the (K-P)th               
segment of length L in the right part. We end the procedure when the segment               
we’re splitting up becomes of length L. 
 
The counting of segments of length L that will form from a segment can be               
done in the complexity of O(log M) dividing it in the same way as the main                
segments before we inserted them in the large array. Since in each step we              
split the segment into two equal parts and discard one of them, the algorithm              
will complete in O(log M) so the total complexity of this solution is O(N log M                
log N + Q log M log M). 
 
 
  



 

Task SIR Author: Gustav Matula 

 
To begin with, let’s assume that in the interior of the polygon there are more               
than two points and not all of them are on the same line. We are only                
interested in the points on the convex hull from the inner set. For a polygon               
vertex i we have the situation as depicted: 

 
The green color marks the tangent in ccw (counter-clockwise) direction to the            
inner hull, index k marks the belonging hull vertex, and index j marks the              
polygon vertex to which (in ccw direction) we can make the best cut from i.               
Notice that this will always be the last vertex (starting from i) from the right               
side of the tangent (looking from i facing k). The area of the polygon from               
vertex i to j is marked with purple and let’s assume it’s P(i, j). If we take the                  
maximum of these areas for each i (vertex j is determined with vertex i), we               
will get the solution. 
 
Let’s denote with i’ the vertex adjacent to vertex i in ccw direction. We are               
interested in vertex k’ of the inner hull through which the tangent from i’ is               
going to pass, and vertex j’, the optimal vertex for i’. Let’s observe the              
following image: 
 



 
Vertex k’ can be found so that we move in ccw direction on the inner hull as                 
long as the next vertex is on the right side of the line from i’ to the current                  
vertex (if we’re looking from i’ facing the current vertex). In the image, the              
vertices for which the next vertex is better are marked with red. 
 
We can find vertex j’ so that we move in ccw direction on the polygon as long                 
as the next vertex is on the right side of the line (i’, k’), from i’ facing k’. 
 
Notice that in this procedure we can keep track of the current area. When we               
move from i to i’, we subtract the area of the triangle (i, i’, j) (marked in the                  
first image). When we look index j’, we add the area of the corresponding              
triangle in each move (those triangles are separated using dotted lines in the             
second image). 
 
The complexity of finding the convex hull of an inner set of points is O(M log                
M). After that, finding the optimal cut is O(N + H), where H is the number of                 
points on the hull, or O(N + M) in worst case scenario. Index i will go through                 
all the points of the outer polygon. Finding the indices j and k can be complex                
in one transition, but in total it’s amortised because both indices can visit a              
point at most once (j on the polygon, k on the inner hull). 


