

Task MOBITEL Authors: Antonio Jurić, Marin Tomić

Let us imagine for a moment that the grasshopper’s mobile phone didn’t fall
into a puddle. In that case, the task comes down to a simulation of writing a
word using the phone’s keys. In order to achieve the aforementioned
simulation, for each letter in the word, we add to the solution the number of
pressed keys needed to get to that letter (according to the image from the
task). Additionally, we have to be careful to separate pressing consecutive
letters from the same key with ‘#’.

When we find a solution obtained by the above method, it is sufficient to
replace every occurrence of key x with key y if key y acts like key x. This
simple modification solves the grasshopper’s problem.

For implementation details, consult the source code.

Necessary skills: loops, arrays, strings
Category: implementation, ad-hoc

Task UTRKA Author: Ivan Paljak

A naive approach to solving this problem would be the following algorithm:

For each contestant from the list

if the contestant’s name is on the ranking list
mark contestant
cross out contestant from the ranking list

Output unmarked contestant

This implementation has a time complexity of O(N̂2*duljina_riječi)and
was sufficient for 50% of total points.

To win all points, it was necessary to notice that the name of the contestant
that didn’t manage to finish the race is going to occur an odd number of times
in the input, whereas the names of all the other contestants are going to occur
an even number of times.

If we think this through, we will see that an analogous claim holds for every
letter in the name of the wanted contestant. For example, if we observe the
number of occurrences of initial letters of all the contestants, we will see that
all the letters except the initial one of the wanted contestant occur an even
number of times. This claim leads us to the following idea:

Let cnt[index][letter] denote the number of occurrences of the letter
letter on position index. Then it is sufficient that, after we have filled out
the matrix, find which letter occurs an odd number of times for each index.
Those letter, starting with index 0, make up the final solution. Filling out this
matrix of dimensions 27x21can be done in O(N*word_length)which is fast
enough for limitations from the task.

In the style of the main character of the sixth task -- “Can it be pimped up? Of
course it can!”
Let us recall some properties of the binary operation xor. More specifically, the
following properties are essential:

1)a xor b = b xor a
2)a xor a = 0
3)a xor 0 = a

Combining these properties, it is easy to deduce that it is sufficient, for every
index, output xorof all letters from the input that occur in that index. We
leave the formal proof for the reader to practise.

For the implementation of this solution, also of the complexity
O(N*word_length), you can consult the official solutions.

Necessary skills: loops, strings, xor
Category: ad-hoc

Task STUDENTSKO Author: Marin Tomić

Let us examine a sample test (8 students, teams of 2 players):

3 2 1 6 7 5 8 4

Let us denote the students that must be in the same team with the equal
numbers:

2 1 1 3 4 3 4 2

Ante can take any number from the sequence and relocate it. With these
operations, in the minimal number of steps, he needs to obtain the sequence:

1 1 2 2 3 3 4 4

Let us find the longest subsequence of elements that are in a relatively good
order in the sequence:

2 1 1 3 4 3 4 2

This is actually the longest nondecreasing subsequence of the sequence. Now
we can relocate all the elements that don’t belong to this subsequence to
corresponding locations, each in one minute.

It is easily shown that this solution is optimal and we leave this for the reader
to practise. Finding the longest increasing subsequence is a typical problem
that can be solved in either O(N2) or O(N lg N) complexity using dynamic
programming.

We recommend that you read the solution to this typical problem on this link,
and for implementation details consult the source code.

Necessary skills: longest increasing subsequence
Category: greedy algorithms, sorting

Task BOB Author: Dominik Gleich

The task is to find the number of rectangles with all of its squares equal. Let us
try to first solve the simpler version of the task; there are only two types of
squares: 0 and 1 and we need to count the number of rectangles that don’t
have a zero, in other words, consist of only 1’s.

Let us try to count these rectangles in a way that we fixate their lower right
corner. Furthermore, let us try to count from left to right, going down through
rows. Additionally, let us define a[x][y] as the number of 1’s until the first zero
to the top of the matrix. (x is the vertical component, y horizontal)

Let us assume that we are calculating the solution for the lower right corner
(x,y).
Let (x, z) be a pair so that it holds a[x][z] < a[x][y], that z < y and that z is
maximal out of all possible z’s. In other words, we want to know the first
position to the left of our current position y so that the height of that column is
smaller than the height of the column at our current position.

To continue, we need to notice that every rectangle with its right corner at
current position (current y), and left corner at position z or to the left of it is
actually a rectangle that has the right corner at position z, extended to column

http://www.google.com/url?q=http%3A%2F%2Fstackoverflow.com%2Fquestions%2F2631726%2Fhow-to-determine-the-longest-increasing-subsequence-using-dynamic-programming&sa=D&sntz=1&usg=AFQjCNEWNaV9YUapHvgxZp9xgiETLQuamg

y. Therefore, the number of rectangles that end at y and go over z are equal to
the number of rectangles ending at z.

We still have to count the number of rectangles that have the left corner to the
right of z. The number of such rectangles is (y - z)*a[x][y] because all
columns up to z are higher than or equal to the column at a[x][y], which
means that every rectangle height is possible, its width being from anything to
y-z.

It is necessary to somehow maintain a structure that will give an answer to the
question: first column on the left, smaller than the current column. This can be
done using a stack or some of the more advanced data structures such as
logarithmic or tournament tree.

Using the stack, we can do this in the following way (pseudocode):

while column on stack peak is larger than current column
pop that column from stack

y <- column left on stack peak
push current column to stack

The complexity of this algorithm on stack is linear.
After we have solved this simpler version of the task, we still need to expand
the solution for the original version of the task.
The expansion is fairly simple and is left for the reader to practise.

Necessary skills: stack
Category: ad-hoc

Task ŠUMA Author: Mislav Bradač

Let us first solve a simpler version of this task where there are no two adjacent
fields with trees of the same height and the same growth speed.

Let us examine two adjacent fields. The trees in those fields can be of equal
height in at most one single moment. The moment when trees in two adjacent
fields become of the same height will be called an event.

The number of events is smaller than 4N. For each event, we can use DFS (or
BFS) to spread from the field where trees have become of the same height and
counting trees in a component, being careful that for a certain moment we do
not iterate over one field more than once.

This algorithm has a complexity of O(N2) because we will iterate over every
field 4 times at most (once for each event which includes that field).

In the original task, a connected component of trees can grow together (if
their initial heights and growth speed are equal). If we apply the previously
described algorithm, we are left with a time complexity of O(N4). This
complexity is achieved in the example where there exists a large component
growing together. This approach was sufficient for 30% of total points. The
next idea that might come to one’s mind is to compress the component of
trees that grow together into one node and construct a graph where two nodes
are connected if their corresponding components are adjacent in the initial
matrix. This approach does not change the complexity because there can exist
a component with many edges (order of magnitude N2), and during DFS for
every event, we will be iterating over all of its edges. This approach, given
some additional (non-deterministic) optimization, was sufficient for 50% of
total points.

The solution for 100% of total points is based on the previous solution, but we
will not be using BFS or DFS but union-find structure for event processing.
Union-find structure will remember the parents of each node and the root of
each connected set remembers the size of its corresponding set.

First we compress all connected trees that grow together into a single node,
then calculate all events for each two adjacent nodes. The events are
processed so that we connect the nodes in the union-find structure which in
that moment become of equal height. During the event processing, we
remember all the changes we made in the union-find structure in order to be
able to restore the structure to the state before the event processing began.
After the event processing, we restore the union-find structure to its initial
state. This solution is of the complexity O(N2 lg N).

It is good to note that we don’t need to use floating points numbers during
calculations, sorting and comparison of events. Careless handling of data types
with floating point resulted in wrong answers in some of the test cases. The
official solution is an example of handling events without floating point
numbers.

Necessary skills: union-find
Category: graphs

Task NORMA Author: Ivan Katanić

The goal of this task is, for each two integers A and B (1 <= A <= B <= N),
calculate the price of the subsequence [A,B] of input array X and to sum up
the given values. Let us imagine that we are moving the right bound B from
left to right and maintaining the array of solutions for current B, so that at
position A of that array, call it array T, there is the price of subsequence [A,B].

A high-level algorithm would look like this:

initialize array T to 0
solution = 0
for B from 1 to N

subsequences are expanded from [A,B1] to [A,B] by adding
X[B]

therefore refresh values in array T at positions 1 to B
add to the solution T[1] + T[2] + … + T[B]

Let’s imagine that every member T[A] of array T internally contains values m,
M and L, minimal number of sequence [A,B], maximal number of sequence
[A,B] and length of subsequence [A,B], respectively.

We need to have an efficient update of values (prices) in array T. Since the
value of a member is the product of its internal values, let us observe how
these are changing when incrementing B by 1 (moving to the right). Values L
of each member with index smaller than or equal to B are incremented by 1.

Let Pm be the position of the rightmost member of array X that is to the left of
B such that it holds X[Pm] < X[B]. Value m of all members of array T at
position from the interval [1,Pm] will be left unchanged while the value m of all
members of array T on positions from the interval [Pm+1,B] will become
exactly X[B].
Similarly, PM be the position of the rightmost member of array X that is to the
left of B such that it holds X[PM] > X[B]. Value M of all members of array T at
position from the interval [1,PM] will be left unchanged while the value M of all
members of array T on positions from the interval [PM+1,B] will become
exactly X[B].

Therefore, it is necessary to implement a data structure that will allow the
following operations:
increment_L(lo, hi, d_L) - increment value L by d_L to all members of the
array at position from the interval [lo,hi].
set_m(lo, hi, new_m) - set value m to new_m to all member of the array at
position from the from the interval [lo,hi].

set_M(lo, hi, new_M) - set value M to new_M to all member of the array at
position from the from the interval [lo,hi].
sum_mML(lo, hi) - return the sum of products of values m, M and L of all the
members of the array at position from the interval [lo, hi].

It turns out that the required operations can be efficiently achieved using a
tournament tree. For this purpose, every node of the tree must contain the
following values:

len - length of the interval of members of the array that the node is covering,
for example, for leaves it holds len=1
sm - sum of values m of all members from the interval
sM - sum of values M of all members from the interval
sL - sum of values L of all members from the interval
smM - sum of values m*M of all members from the interval
smL - sum of values m*L of all members from the interval
sML - sum of values M*L of all members from the interval
smML - sum of values m*M*L of all members from the interval

How would incrementing values L to all members from the interval belonging
to the node of the tree look like?
It is necessary to suitably change the value of each node in the following way:
sL = sL + d_L * len
smL = smL + sm * d_L
sML = sML + sM * d_L
smML = smML + smM * d_L.

Let’s observe how setting values m to all members from the interval belonging
to the node of the tree looks like:
sm = new_m * len
smM = new_m * sM
smL = new_m * sL
smML = new_m * sML.

And, finally, setting values M to all members from the interval belonging to the
node of the tree:
sM = new_M * len
smM = new_M * sm
smL = new_M * sL
smML = new_M * smL.

Because of the fact that all values in the nodes are sums, merging two nodes
of a child for the purpose of calculating values of the parent node is simply the
summation of the corresponding values from both nodes.

The nature of mentioned operations on the structure is such that it is
necessary to use tournament tree with propagation. The details of this
expansion are general and left out from this description, but can be looked up
in the attached code.

We are still left with efficiently finding the rightmost smaller or larger number
than the current X[B]. This can be simply implemented using a stack. Here we
will describe finding the rightmost smaller value that is to the left of X[B], and
finding the rightmost larger value is done in a similar manner.

If we take into consideration that B is being moved from left to right, from 1 to
N, then we are actually talking about the last member of array X that we
passed, and is smaller than X[B]. For each B from stack we will pop all the
numbers larger than or equal to X[B] since from now on they can’t ever be
someone’s last smaller number (X[B] is smaller than them and is located after
them). After that, stack’s peak will be exactly member of array X that we were
looking for, the last one smaller than X[B]. Before incrementing B and moving
to the right, we push X[B] on stack. The given algorithm is of linear complexity
because each member of the array is pushed and popped from stack at most
once.

All operations on tournament tree are of the complexity O(log N), and they are
done O(N) times, so the total complexity of this solution is O(N log N).

Necessary skills: tournament tree, propagation, stack
Category: data structures

