


 

Task PROSJEK Author: Goran Gašić 

 
Let  be the sum of the first  numbers in sequence  It holdsSk k .A  

 
Bk = k

Sk  

It follows 
 

Bk+1 = k+1
S +Ak k+1  

From here we get the expression for Ak+1  
 

k )Ak+1 = ( + 1 ∙ Bk+1 − Sk  
 
We calculate elements of the sequence  and their sum  iteratively by usingAk+1 Sk  

one loop over sequence .B  

 
Necessary skills: operators, sequences 
Category: ad-hoc 
 

Task KLOPKA Author: Adrian Satja Kurdija 

 
Iterating once over given points (or during the input) we find the leftmost point (the 
one with the minimal x-coordinate), the rightmost point (the one with the maximal 
x-coordinate), the lowermost point (the one with the minimal y-coordinate) and 
the topmost point (the one with the maximal y-coordinate). We do this using the 
standard algorithm of finding minimum/maximum: remember the 
minimum/maximum so far, compare it to the new value and change it if needed. 
 
The four vertices found make a rectangle, but we need a square. In order for the 
square to cover all points, its side has to be equal to the longer side of the 
mentioned rectangle. When we’ve found the side length of the square, we need to 
square the value (multiply it by itself) to get the required area. 

 
Necessary skills: for-loop, finding the minimum and maximum value 
Category: ad-hoc 
 
 
  



Task PIRAMIDA Author: Marin Tomić

 
Firstly, let us notice that changing the word direction from row to row doesn’t have 
any impact on the number of individual letters in a certain row. 
 
A naive solution would be to simulate writing the letters into each row and count 
the number of appearances of individual letters in the matrix num[26][N] and then 
output the value from the matrix for each query. The memory complexity of this 
solution is O(N) and time complexity O(N2+K), which is enough for 50% of total 
points. You can find an implementation of this solution in the file piramida_n2.cpp. 
 
For a more effective solution, we need to examine how string s looks written down 
in each row. There are two options: 
 

1) s = w[i..j] for some i and j. In other words, string s is a substring of 
string w. 

2) s = w[i..L] + x * w + w[0..j] for some i and j. In other words, string 
s consists of a suffix of string s (possibly an empty one), then the whole 
word w repeated x times and, finally, a suffix of string w (possibly an empty 
one) 

 
For example, if the word w would be “ABCD”, the 12th row of the pyramid would be: 

CDABCDABCDAB = CDA + 2 * ABCD + AB = w[1..4] + 2 * w + w[0..2] 
 
In order to determine x, i and j for a certain row, we need to be able to determine 
what letter the word in that row begins with. It is easily shown that for row r that 
position is equal to the remainder of dividing number r * (r1) / 2 with m. It is 
necessary to carefully implement this formula because r can be very big. When we 
have calculated the position, it is easy to determine parameters x, i and j. 
 
Now we can come up with the formulas for certain cases. Let f(c, i, j) be the 
number of appearances of cth letter of the alphabet in the substring w[i..j]. The 
formulas are the following: 

1) number_of_appearances = f(c, i, j) 
2) number_of_appearances = f(c, i, L) + x * f(c, 0, L) + f(c, 0, j) 

 
To implement this solution effectively, we need to be able to quickly calculate the 
value of function f. We can do this by constructing a matrix p[26][L] where the 
element at index [i][j] tells us how many times the ith letter of the alphabet 
appears in the substring w[0..j]. Then we calculate f(c, i, j) by the formula 
f(c, i, j) = p[c][j]  p[c][i1]. 
 



The memory complexity of this solution is O(M), and time complexity O(M+K), 
which was enough for all the points in HONI. This solution is implemented in the file 
piramida_honi.cpp. 
 
In COCI, this solution was enough for 70% of total points because the maximal 
string length was bigger, so a matrix of the dimension 26 * L couldn’t fit in 32 MB. 
It was necessary to solve queries separately for each letter. In this case, instead of 
a matrix of the dimension 26 * L, a matrix of the dimension L was enough. This 
solution is implemented in the file piramida_coci.cpp. 
 
Necessary skills: preprocessing, mathematics 
Category: ad-hoc, preprocessing 
 

Task MAFIJA Author: Adrian Satja Kurdija 

 
A greedy algorithm works in this task: if there is a person X whom nobody has 
accused, we can declare that person as a mobster. If that person accused person 
Y, then the person Y cannot be declared as a mobster and that person can be 
removed completely too. When removing person Y, we need to decrease the count 
of times the person Z has been accused, so that the person Z can eventually be 
declared as a mobster. 
 
After repeating this procedure as much as we can, we will end up with cycles. In 
other words, there won’t be a person that hasn’t been accused. Then any person 
can be declared as a civilian and removed, so we can apply the aforementioned 
procedure again and so on, until there are any unmarked persons left. 
 
Readers that are well informed about graphs will notice that the task is basically 
finding a maximum independent set on a pseudoforest. It pays off to choose 
leaves, delete their neighbours and repeating the procedure until there are cycles 
left (although solvable). This solution is completely equivalent to the previous one, 
but is easier to visualize. 
 
Both cases need to be implemented carefully so the complexity of the algorithm is 
O(N). 
 
Necessary skills: graphs or greedy algorithms 
Category: ad-hoc 
 
 
 
 



 

Task ZABAVA Author: Adrian Satja Kurdija 

 
Firstly, we need to notice that the sequence of students moving into the buildings is 
irrelevant: all that matters is how many students move into an individual building, 
because the parties in a certain building happen completely independently of other 
buildings. Therefore, we can assume that we are given M numbers: the number of 
students moving per building. 
 
Let us observe a building and assume that it will be emptied exactly P times and see 
how it should be emptied optimally. Let us assume that the first time we emptied it 
was after x(1) students moved in it, the second time after a new x(2) students 
moved in it, and so on until the final time we emptied it after x(P) students, after 
which an additional x(P + 1) students moved into it until the end. 
 
The noise level before the first time it was emptied is 1 + 2 + … + x1 = x1(x1 + 
1)/2, and the analogous formula holds for the noises after the first time it was 
emptied, the second time and all the rest until the end. 
The total noise level in a building is therefore: 
 

½ * sum( xi(xi + 1) ), for i = 1 … P + 1. 
 

If we discard the division by two, this noise level is simply equal to the sum of 
squares xi

2 plus the regular sum xi, but that sum is constant and equal to the total 
number of students who moved into that building. So, we need to minimize the 
sum of squares of P + 1 numbers, and the sum of these numbers is given. 
 
From the arithmetic and quadratic mean inequality, it holds that the sum of squares 
is minimal when the numbers are equal. Here, it is occasionally impossible to 
achieve because of (in)divisibility, but the numbers will be “almost equal”, in other 
words, they will differ from one another only by 0 or 1. This division and the 
required sum can be easily calculated in constant time by using simple formulas. 
This is an effective way of solving the problem for one building and a fixed number 
of times that building is emptied. 
 
Now the task can be solved by dynamic programming. If dp(m, k) marks the least 
possible noise level we can achieve in the first m buildings with k times of emptying 
it, that value is calculated so that we try every possible way of emptying the mth 
building (let’s call it P) and check whether the given noise level, which is: 
 

dp(m - 1, k - P) + (solution for the mth building with P times of being emptied, as 
described above), 



 
is the minimal noise level so far. The final solution is, of course, dp(M, K). The 
complexity of this algorithm is O(MK2). 
 
Necessary skills: mathematical problem analysis, dynamic programming 
Category: dynamic programming 
 

Task KAMP Author: Antonio Jurić

 
Let us observe the case when the camp is placed at house number 1. Because the 
village is represented as a tree graph, the path from the camp to any individual 
house to which the volunteers must go is unique. Let us assume that Mirko must 
return back to camp after he drives all the teams. 
 
When he drives one team to their house and it turns out that another team has to 
go to a house that is on the way to the first house, Mirko will of course drive both 
teams in order to save time. Because of the assumption that Mirko has to return 
back to camp, the solution would then be twice the sum of all edges that 
connect the camp and all the houses the volunteers go to. 
 
Since the task condition is that Mirko has to stay and help the last team (so, not 
going back to camp), the best solution is to always drive the farthest team last 
because that way we drive only once through the tree edges that connect the 
farthest house. Now the final solution is twice the sum of all edges that connect 
the camp and all the houses the volunteers go to minus the length of edges in 
the longest branch. 
 
Finding the edges that connect the camp and houses the volunteers go to can be 
done in complexity O(N), and when we apply this algorithm in a way that we try to 
place the camp in every house, the final complexity would be O(N2) and that 
solution is good enough for half of total points. 
 
Let K be the minimal subtree of the given tree that contains all houses the 
volunteers have to go to and possibly some other houses that are in the way 
between the volunteers’ houses. Let S be the sum of all edges of subtree K. Then 
the solution for a house X is: 
 

solution[X] = distance[X] + 2*S – farthest[Y],  
 

where distance[X] is the minimal distance between house X and subtree K or, more 
specifically, some house Y from subtree K. Additionally, farthest[Y] is the length of 
the longest chain from house Y in subtree K. This formula assumes that we know 



the maximal length of the longest chain for each house in K, which is possible to 
calculate by a careful DFS traversal of the tree. The complexity of this solution is 
O(N) and gives total points. For details about calculating the longest chain from 
every house in K, see the source codes. 
 
 
Necessary skills: tree, DFS 
Category: graph theory 


