
CROATIAN OPEN COMPETITION IN
INFORMATICS

2013/2014

ROUND 6

SOLUTIONS

Special thanks to Bruce Merry for sharing his writeup.

COCI 2013/2014 Task VJEKO

6th round, March 8th, 2014 Author: Marin Tomić

We will split the sample into two parts; the first part being before the
asterisk (let us call it S) and the second part after the asterisk (let us call
it T). The file name matches the pattern if it is in the form of S + R + T,
where R is some string (possible an empty one). Therefore, the file name
must begin with S and end with T. However, this is not a sufficient
condition.

If we take the sample “ab*bc”, we have S = ab and T = bc. The file name
“abc” begins with S and ends with T, but it still doesn’t match the sample
“ab*bc”. It is necessary to check whether S and T overlap in the file name.
In other words, is length(S) + length(T) > length(file name).

Hence, if a word doesn’t begin with S or doesn’t end with T or the
aforementioned condition with lengths is met, we output “NE” (Croatian for
no), else we output “DA” (Croatian for yes).

A solution which does not check whether S and T overlap is sufficient for
50% of points.

Necessary skills: string comparison
Category: strings

COCI 2013/2014 Task FONT

6th round, March 8th, 2014 Author: Marin Tomić

We need to find the number of different subsets of the set of given words
such that the combined words in the subsets contain all lowercase letters
of the English alphabet. In a set of N words, we can choose 2N different
subsets. Because N is an integer less than 25, we have a maximum of 225
= 33554432 subsets. This number is small enough for us to be able to
pass through all possible subsets and check whether they contain the
whole alphabet.

A regular way of passing through all subsets of a set is using a recursive

function.
f(i):
if i = N + 1: check whether the inserted sets contain the whole

alphabet
(we’ve passed through all words)
else: add the ith word to the set

call f(i + 1)
remove the ith word from the set
call f(i + 1)

Additionally, we need to decide how to represent these sets in the
computer’s memory so we could implement the addition and removal of a
word in the set.

One possible way is using an array appeared[26] which keeps track of
how many times each letter of the alphabet appears in the current subset
and using a variable total which keeps track of how many different letters
there are in the current subset.
When we add a word to the subset, we increment the counter in the array
appeared[letter] for each letter of the word, and increment the counter
total only if 0 was written so far in appeared[letter] (if we’ve added a
letter which hasn’t appeared in the set so far). A similar procedure is done
for removing a word from the set.
The complexity of this algorithm is O(2M * L), where L is the maximal
length of the word. This solution is sufficient for 50% of points.

Another way of representing sets of letters in the computer’s memory is
using a bitmask. A bitmask is a series of ones and zeroes where the ith
place is zero only if the ith element is present in the set and zero if it isn’t.
For example, the set {a, b, d, z, y} is represented with a bitmask
110...01011 (the numbers are enumerated from right to left). The union
operator of the sets represented with bitmasks corresponds to the OR
operator of their bitmasks.
The advantage of this implementation of sets in the memory is because
the processor deals with bitwise operations really quickly, the complexity
being O(1).
The complexity of the algorithm when using this kind of implementation of
set operations is O(2M).

For implementation details, consult the source code.

Necessary skills: finding all subsets, bitwise operations
Category: bit manipulation

COCI 2013/2014 Task KOCKICE

6th round, March 8th, 2014 Author: Antonio Jurić

Let’s observe the function f(x) where x represents the height of the
middle column (the one with the minimal height) which tells us the number
of minimal moves necessary to rearrange the piles in the described way.
We can calculate this because then the minimal number of moves is
uniquely determined: if a column has more bricks than necessary, we need
to remove them and if it is missing bricks, we need to add new bricks.

We have two piles, but it is stated that in the end the corresponding
columns have to be of equal heights. Then Mirko’s pile is f1(x) = |cm1 - x|
+ |cm2 - x| + … + |cmn - x| and Slavko’s pile is f2(x) = |cs1 - x| + |cs2 - x|
+ … + |csn - x| where cm1, cm2, … , cmn i cs1, cs2, …, csn are constants which
depend on the height and position of the column.

If we observe the graph of the function (f1 + f2)(x) we will notice that the
function is decreasing at first, then increasing and it has only one global
minimum.

It is easily noticed that this minimum is exactly the first point m for which
the following holds: (f1 + f2)(m) < (f1 + f2)(x + 1). In other words, it is
the point where the function starts to increase. Also, we can notice that
for every point to the left of m the following holds: (f1 + f2)(x) > (f1 +
f2)(x + 1) and for every point to the right of m: (f1 + f2)(x) < (f1 +
f2)(x + 1). This is why we can locate point m using binary search, by
comparing the relation of function values of two adjacent points.

For implementation details, consult the source code.

Alternative approach (Bruce Merry). The first trick is to notice that the
slightly odd target shape can be removed from the problem: simply

subtract |i - N / 2| from element i of the inputs (the shortest target shape)
and now solve for a flat target. You have 2N numbers and need to find the
m such that sum(|a_i - m|) is minimised. This is just the median of the
numbers (exercise: prove this, if you don't already know why). The median
can be found in O(N) time using std::nth_element; a binary search is also
fast enough.

Necessary skills: mathematical analysis of the problem
Category: binary search

COCI 2013/2014 Task KRUŽNICE

6th round, March 8th, 2014 Author: Luka Kalinovčić, Anton
Grbin

Since the circles do not intersect, we can look at them as intervals. More
specifically, we observe their intersection with the x-axis.

Let us construct a relation contains such that A contains B if the interval
B is inside of interval A, with allowed touching on the edges.

Let us construct a relation directly_contains such that A
directly_contains B if A contains B and there is no other circle C for which
holds that A contains C and C contains B.

Intuitively, A directly_contains B if B is one of the first smaller circles in
A.

Because there is at most one circle that directly_contains an arbitrary
circle, this relation is a tree.

Every circle will increase the number of regions by 1 or 2. In the case when
a circle directly contains more other circles which touch along all its length,
that circle is going to increase the solution by 2. In the contrary, by 1.

The tree of circles can be built using the sweep algorithm where an event
is the beginning or the end of a circle. The events are processed by their x
coordinates. As the structure of sweep algorithm we will use a stack which
keeps track of the current parent circle and whether we have lined up every

directly contained circles next to each other. In the moment of popping a
circle from the stack, the solution is increased by 2 if all the directly
contained circles are lined up next to each other. In the contrary, the
solution is increased by 1. The final solution needs to be incremented by 1
because it represents the whole region above all the circles.

The complexity of the algorithm is O(N log N) where N is the number of
circles.

Necessary skills: stack data structure, sweep line traversal, tree
Category: sweep line

COCI 2013/2014 Task HASH

6th round, March 8th, 2014 Authors: Anton Grbin

This requires a "meet-in-the-middle" attack: it's a common idea in crypto,
but is also useful in a number of exponential-time competition problems.
For N = 10, we can't consider all 2610 words separately. However, we can
consider 265 five-letter prefixes and 265 five-letter suffixes, and then
figure out how to match them up. For each prefix, we can compute its
hash, and store a table for how frequently each such hash occurs. For each
suffix, we can compute what the hash of the prefix would need to be for
the final hash to be K, and then use the table to find the number of
prefixes that match this suffix. To compute what the hash would need to
be, we work backwards: assume the final hash is K, and then remove one
letter at a time from the end.

Let us observe an iteration of the stated hash function with the
assumption that the current value of hash is S and the ordinal number of
the next letter is x.

S’ = ((S * 33) xor x) % MOD

We will try to get the value of the previous state S when we know the
current state S’ and the ordinal number of the letter which got us to the
state x.

Given the fact that we can look at the operation remainder when dividing
with a power of two (2M) as discarding any bits after the Mth, it is easily
noticed that the following holds:

(A xor B) % MOD = (A % MOD) xor *(B % MOD)

Therefore,

S’ = ((S * 33) % MOD) xor (x % MOD)

because the bitwise XOR is inverse to itself and x will always be smaller
than MOD, this is also true:

S’ xor x = (S * 33) % MOD

The modular multiplicative inverse of 33 in field of size MOD will exist if 33
and MOD are relatively prime. Since MOD is a power of two, this condition
is completed. The modular inverse can be obtained using extended Euclid’s
algorithm, fast exponentiation or with brute force because M is small
enough.

Let us display the complete inverse relation of the hash function:

(S’ xor x) * inv(33, MOD) = S

Having inverse relation in place, meet in the middle attack is done which
gives us time complexity of O(26^(N/2)).

Necessary skills: extended Euclid’s algorithm or Euler’s theorem and fast
exponentiation, bitwise operations, advanced recursion, breaking the
problem into smaller parts

Category: number theory, meet-in-the-middle

COCI 2013/2014 Task GRAŠKRIŽJA

6th round, March 8th, 2014 Authors: Luka Kalinovčić, Adrian
Satja Kurdija

Let us sort the given traffic lights by their x-coordinate. Let x’ be the
middle (median) x-coordinate in that array. Let A be a set of given traffic
lights to the left of x’ and B to the right.

We will construct a harmless path between each pair of traffic lights a, b
such that a is from the set A and b is from the set B. How? By adding new
traffic lights to the locations (x’, y) for each y-coordinate y from the sets A
and B. Now for traffic lights a and b we have a harmless way (xa, ya) →
(x’, ya) → (x’, yb) → (xb, yb).

Now all we need to do is connect the traffic lights within the set A with
one another, as well as those within the set B. We do this by recursively
repeating the described procedure, specifically for set A and specifically for
set B. This way of thinking is called divide and conquer.

A little bit of thinking is needed to be sure that the new traffic lights don't
generate any new dangerous paths, but the implementation is reasonably
simple.

What is the number of additional traffic lights? Given the fact that we
divide the set into two parts, the maximal depth of recursion is O(lg N).
Let us observe an initial traffic light at the location (x, y). Worst case
scenario, at every depth of the recursion, it will be included in a set and
there it will generate a new traffic light (x’, y). Therefore, one initial traffic
light generates O(lg N) new traffic lights, which gives us a total of O(N lg
N) new traffic lights. With careful implementation, the exact number turns
out to be less than 700 00.

Necessary skills: sorting, recursion, divide and conquer principle
Category: ad hoc

