

CROATIAN OPEN COMPETITION IN

INFORMATICS

2013/2014

ROUND 5

SOLUTIONS

COCI 2013/2014 Task LOZINKA
5th round, February 15th, 2014 Author: Anton Grbin

This is an implementation task. Firstly, we load the whole dictionary into the
memory, then make a reversed copy of every word and go through the
dictionary checking whether a reversed word exists. If the reverse word
indeed exists in the dictionary, we must output its length and central
character.

Notice that, because all the words are of odd length, the central character in
the original and in the reversed word is going to be the same.

Necessary skills: strings, string reversal, string comparison
Category: ad-hoc

COCI 2013/2014 Task OBILAZAK
5th round, February 15th, 2014 Author: Marin Tomić

Firstly, we will enumerate the nodes in the tree in the following way: the
root is number 1, its left child is number 2 and its right child is number 3.
Generally, the left child of a node t is numbered with 2 * t and the right
child is numbered with 2 * t + 1.

Mirko walks around visiting the buildings following this recursive algorithm:
 visit(x)
 if x < 2K-1, visit(2 * x)
 write down x on paper
 if x < 2K-1, visit(2 * x + 1)

We can construct a “reverse” recursive function which will reconstruct a tree
for a given route of visits. We will use an array tree[] where the ith item is
going to be a label of the ith node and a counter p which is initially set to 1.

 return(x)
 if x < 2K-1, return(2 * x)
 tree[x] = route[p]
 p = p + 1
 if x < 2K-1, return(2 * x + 1)

In the end, we output items of the array tree[].

The task could have been solved without recursion, with noticing regularities
in the route of visits of the tree. Consult the source code for this type of
solution.

Necessary skills: recursion, for loop
Category: ad-hoc

COCI 2013/2014 Task EKSPLOZIJE
5th round, February 15th, 2014 Author: Antonio Jurić

A simple solution which literally simulates the described procedure of chain
reaction (finds the first appearance of the explosion, deletes it, concatenates
the rest of the string and repeats this procedure) is not fast enough because
of the limitations (1 <= |Mirko’s string| <= 1 000 000).

One of the faster solutions uses hashing. But, given the fact that the
explosion consists of only different characters (uppercase and lowercase
letters of the English alphabet and digits 0, 1, … 9), it is possible to come up
with a solution in linear complexity which uses stack to keep track of certain
data during the string analysis.

The string analysis is done in the following way: we scan Mirko’s string
character by character. Because the stack is used to quickly identify the
explosion, it will keep track of the position in the explosion. During the
analysis, two main situations can happen:

1. The current character is equal to a possible beginning of the
explosion: mark this position and remember it (push it on the stack).

2. The currect character is not equal to a possible beginning of the
explosion (and the stack is not empty):

a. the current remembered position in the explosion on the stack
fits the current character in the string: move this position
forward in the explosion and push it back on the stack (it is
possible that in this step we have reached the end of the
explosion, which means we have located it in the string so it is
necessary to mark the beginning and the end of the explosion
for later deletion and then we don’t push it back on the stack)

b. the current remembered position in the explosion on the stack
doesn’t fit the current character in the string: empty the whole
stack (we leave this question to the reader, as to why we are
discarding the whole stack in this situation)

When we finish scanning the string, it is necessary to delete the marked
explosions in the string in one pass.
This way, using the stack, we have made sure that our algorithm works in
situations when deleting an explosion and concatenating the rest of the
string produces new explosions.

A special case is when the length of the explosion is 1. For implementation
details, consult the source code.

Necessary skills: problem analysis, strings, stack
Category: ad hoc

COCI 2013/2014 Task DOMINE
5th round, February 15th, 2014 Author: Anton Grbin

This task is a classic example of dynamic programming.

Let the state be a function which maps some form of the board with
potentially occupied fields in the last row and the number of dominoes into
the best coverage we can possibly get. More specifically, we want to know
the best coverage for every number of rows N, number of dominoes K and a
set of occupied fields in the last row B.

The solution for a certain state can be calculated based on previous states so
that we try to place dominoes in the last row in every 11 ways possible.
Each of these ways is going to need some available fields in the previous row
and will occupy some fields in the current row. The ways are represented in
a bitmask where the first digit is the binary code of the place we’re
occupying in the previous row and the second digit is the binary code of the
place we’re occupying in the current row.

const mask_t cases[11] = {

 0x00, // without domino placed
 0x11, 0x22, 0x44, 0x03, 0x06, // if we place 1 domino

 0x17, 0x47, 0x33, 0x55, 0x66 // if we place 2 dominoes
};

Using these moves we can construct a relation. The number of states is 8 *
N * K = 8 000 000, whereas the relation in our example is a constant, 11.
The memory usage is exactly 8 * 1000 * 1000 long long types of data. This
is 64MB.

You can find the source code for the solution which uses only 32 MB in the
archive.

Necessary skills: bit masks, breaking a problem into pieces, clean
implementation and code testing
Category: dynamic programming

COCI 2013/2014 Task TROKUTI
5th round, February 15th, 2014 Authors: Adrian Satja Kurdija, Marin

Tomić

Considering three different lines, we can notice that they form a triangle if
and only if their slopes are mutually different. The lines i and j have different
slopes if Ai / Bi is different than Aj / Bj (be careful with division by zero).
This leads us to our first solution with the complexity of O(N3), where we
test whether the slopes are different for every line triplet (i, j, k).

If we could find out how many lines there are with a slope different than the
slope of a certain pair of lines, the task could be solved by fixating all
possible pairs of lines (i, j) with different slopes and add the answer to the
query for lines i and j to the solution.

Let equal(x) represent the number of lines with a slope equal to the slope of
line x. Then the number of lines with a slope different than the slope of lines
i and j is N - equal(i) - equal(j). The values of equal(x) can be preprocessed
in the complexity of O(N lg N) with simple sorting, which brings us to the
solution of complexity O(N2).

For a solution valid for 100% of points, introduce two new functions:
greater(x) and smaller(x) which tell us how many lines there are with slopes
strictly greater or strictly smaller than the slope of line x. These functions
can also be easily preprocessed in the complexity of O(N lg N) with the help

of sorting. The number of triangles where the line i belongs and has the
middle slope size can be calculated as greater(i) * smaller(i). For the final
solution, we only need to sum these values for each i from 1 to N. The total
complexity is O(N lg N).

Necessary skills: preprocessing, sorting, basics of analytical geometry

Category: ad hoc

COCI 2013/2014 Task LADICE
5th round, February 15th, 2014 Authors: Luka Kalinovčić, Gustav

Matula

The state of drawers and items can be represented by a directed graph
where the nodes are drawers and the edges are items. If an item is located
in drawer A, and its alternative is drawer B, the graph contains the edge A -
> B. Given the fact that each drawer can contain a maximum of one item,
the out-degree of all nodes is either 0 or 1, the path from any drawer is
unambiguous and ends in an empty drawer or a cycle of drawers.

If drawer B is empty and there if an edge A -> B, it is possible to store the
item from drawer A to drawer B, which corresponds to swapping edge A ->
B with edge B -> A. In other words, reversing the associated edge.

If there is a path from a full drawer A to an empty drawer B, the drawer A
can be emptied by repeatedly moving items, which corresponds to swapping
edges on the path from A to B.

If a path from a drawer ends in a cycle, that drawer cannot be emptied.

We need a data structure which can tell us whether it is possible to empty a
drawer (or if it’s empty already) or, in other words, is there a path in the
graph to an empty drawer.

Let us mark final[l] the empty drawer which is the end of the path from
drawer l; additionally, if l is empty, then final[l] = l, and if such a path
doesn’t exist, then final[l] = 0 (an empty drawer 0 is added as a mark for a
cycle).

When adding a new item, the following scenarios are possible:

1. If the item is being added in the empty drawer A whose alternative is
drawer B, then for each l where final[l] = A, we change into final[l] =
final[B].

2. If the drawer A needs to be emptied first and then add an item, the
same thing happens.

A naive modification of the array final can be too slow for the limitations in
this task.

The key thing is to notice how the drawers can be divided into classes
considering the final drawer (drawers with equal final drawers are located in
the same class), which enables us to implement the relation final efficiently
with the union-find structure:
http://en.wikipedia.org/wiki/Disjoint-set_data_structure.
A cycle is formed if we add an item whose drawers are both located in the
same class.

With the help of the structure, we use a function find(l) which corresponds to
the aforementioned array final[l] and function unite(a, b) which performs the
substitution described in 1.

When we have defined these functions, the following can be applied:

For an empty drawer, find(l) == l.
For a drawer that can be emptied, find(l) != 0.
A cycle is formed when adding items with drawers A and B if find(A) ==

find(B), and if it is added in the structure as unite(A, 0).
Otherwise a new cycle is not formed and we add the item as unite(A, B) (if
we are adding the item in the drawer A).
For implementation details, consult the source code.

Necessary skills: union-find, graph theory
Category: graphs

