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COCI 2013/2014 Task RIJEČI 

3rd round, December 7th, 2013  Author: Marin Tomić 

 

If we tried to simulate what Mirko is doing, we would have exceeded both the 

time and memory limit because the words that Mirko reads out on the screen can 
consist of hundreds of thousands (or even millions) of characters, even for small 

K. That's why we won't simulate Mirko's process, but count the number of letters 
A and B in the following way: 

 initially, number_of_A = 1 and number_of_B = 0 
 in one step we get one letter A for each letter B we've had so far, and one 

letter B for each letter A and each letter B we've had so far; therefore: new-
A = number_of_B and new_B = number_of_A + number_of_B 

 

Necessary skills: for loop, calculation 
 

Category: for loop 
 

 

COCI 2013/2014 Task OKVIR 

3rd round, December 7th, 2013  Author: Adrian Satja Kurdija 

 

The easiest way is to first fill out the whole chessboard with characters # and ., 

the dimensions being (U + M + D) x (L + N + R), and then typing in Mirko's 
crossword puzzle. For both operations, we need a double for loop iterating 

through the matrix (or submatrix). 
 

As for filling out the chessboard, the field (i, j) will be # depending on the parity 

of i + j. As for typing in Mirko's crossword puzzle, the field (i, j) of Mirko's 
crossword puzzle from the input will be typed into the (U + i, L + j) field of our 

chessboard. 

 
Necessary skills: matrix operations 

 
Category: ad hoc 

 
 

COCI 2013/2014 Task REČENICE 

3rd round, December 7th, 2013  Author: Marin Tomić 

 

Since there will always be an existing solution less than 1000, we can simply try 
and put each number from the interval [1, 999] in the sentence and check 



whether it is the possible solution. For a sentence with the number x in it to be 

valid, the following condition must be met: 

length of the name of number x + sum of word length in the sentence = x 
 

Now the only problem is to create a function which will determine the names of 

numbers. We can do this in the following way: 
 create three arrays, special[], tens[], hundreds[] 

 the array special is going to consist of names of numbers 1 to 19, i.e. 
special[11] is going to be “eleven” 

 the array tens is going to consist of names of tens, i.e. tens[7] is going to 
be “seventy” 

 identically, the array hundreds is going to consist of names of hundreds, 
i.e. hundreds[3] is going to be “threehundred” 

 now we implement naming the numbers as described in the task 
 

Pseudocode: 

 name(x) 
  answer = '' 

  if the hundreds' digit of x is not 0: 

   answer = answer + hundreds[hundreds' digit of x] 
  remove the hundreds' digit from x 

  if x is from the interval [1, 19]: 
   answer = answer + special[x] 

  else: 
   if the tens' digit of x is not 0: 

    answer = answer + tens[tens' digit of x] 
   if the single digit of x is not 0: 

    answer = answer + single[single digit of x] 
 

Consult the solution code for further implementation details. 

 
Necessary skills: string operations 

 
Category: brute-force algorithms, strings 

 

 

COCI 2013/2014 Task KOLINJE 

3rd round, December 7th, 2013  Author: Adrian Satja Kurdija 

 

People from 1 to N are going to get, respectively, B1X, B2X, …, BNX kilos of ham, 

given an X. We need to find X such that the sequence is correct; from it, it is 
easy to calculate the total number of distributed kilos. 
 

We want the following to be true: A1 + B1X ≥ A2 + B2X ≥ … ≥ AN + BNX. 
 

Let us analyze the first inequation; the rest are analyzed analogously. From  A1 + 



B1X ≥ A2 + B2X follows 

(B1 - B2)X ≥ A2 – A1. 
 

We'd like to divide this inequality by B1 – B2 so only X is left on the left side. 
However, we need to be careful! 
 

If B1 – B2 = 0, we cannot make the division, but the inequality turns into 0 ≥ A2 – 
A1. In this case, if A2 – A1 > 0, we output -1 because this is a contradiction. 

Otherwise, the inequality is valid so we move onto the next one. 
 

If B1 - B2 ≠ 0, we can make the division, but dividing by a negative number 

changes the inequality signs so we either get X ≥ (A2 - A1) / (B1 - B2) or X ≤ (A2 
- A1) / (B1 – B2). In one case we got the lower, and in the other the upper bound 

for X. 
 

Repeating this operation for all N – 1 inequalities, we gathered some lower and 

upper bounds for X. Of all the lower bounds, we are interested in only the 
greatest (because it implies all the rest), and of all the upper bounds, we are 

interested in only the smallest (because it implies all the rest). If between those 
two bounds there is a number, that is, if the lower bound is smaller or equal to 

the upper, a solution exists: we can use the average of the lower and upper 

bound as X. Otherwise, the solution does not exist. 
 

The task is also solvable with binary search; we leave the details for the reader to 

practise. 
 

Necessary skills: mathematical problem analysis, mathematical inequality 
basics 

 
Category: ad hoc 

 
 

COCI 2013/2014 Task PAROVI 

3rd round, December 7th, 2013  Author: Marin Tomić 

 

Since this is all about big numbers, obviously calculating the distance for each 
pair individually is not fast enough. Nevertheless, we'll do it in a very specific way. 

 

We won't go through all numbers with two nested loops, but create a function 
f(prefix1, prefix2, sum) which will build the numbers digit by digit. 

 
For example, a pair of numbers (32, 1689) would be built by adding digits, 

respectively, (0, 1), (0, 6), (3, 8), (2, 9). 
 

Function f would look like this: 
 



f(prefix1, prefix2, sum): 

 if prefixes are completely built, return sum 

 
 let (x, y) go through all possible pairs of digits: 

  if you can add x on prefix1 and y on prefix2: 
   call f(prefix1 * 10 + x, prefix2 * 10 + y, sum + |x – y|) 

 
This solution is not quicker than the two nested loops solution, but it can be 

tweaked. First we will get rid of the sum parametar from the function. 
 

We will build a function num(prefix1, prefix2) which, for given prefixes of the first 
and second number, calculates the number of ways to "finish" these two numbers. 

 
num(prefix1, prefix2): 

 if prefixes are completely built, return 1 
  

 sol = 0 

 let (x, y) go through all possible pairs of digits: 
  if you can add x on prefix1 and y on prefix2: 

   sol = sol + num(prefix1 * 10 + x, prefix2 * 10 + y) 
 return sol 

 
Now the function f can be transformed as follows: 

 
f(prefix1, prefix2): 

 if prefixes are completely built, return 0 
 

 sol = 0 
 let (x, y) g through all possible pairs of digits: 

  if you can add x on prefix1 and y on prefix2: 
   sol = sol + num(prefix1 * 10 + x, prefix2 * 10 + y) * |x – y| 

   sol = sol + f(prefix1 * 10 + x, prefix2 * 10 + y) 

 
 return sol 

 
The only thing left to notice is that we do not need to know the whole prefix in 

order to know whether we can add digit x. It is sufficient to know how many 
times we have added a digit before this one and has the prefix ever been 

different than the upper and lower interval bounds. This gives us a dynamical 
programming approach with O(number length * number of possible digits^2) 

complexity. 
 

For additional details, check out the source code. 
 

Necessary skills: dynamic programming 
 



Category: dynamic programming 

 

 

COCI 2013/2014 Task ODAŠILJAČI 

3rd round, December 7th, 2013  
Author: Matija Milišić, Antun 

Razum 

 

Let us examine a part of the city between a pair of buildings and mark it with [X, 
Y]. To begin with, we do not care about the transmitters to the right of that 

interval. Every transmitter covers a part [Z, Y], while the left part [X, Z] stays 
uncovered. It is sufficient to find a transmitter with the minimal Z, let's call it ZL. 

 
We conclude similarly for the transmitters to the right of that interval. Then the 

part [X, Z] is going to be covered, and the part [Z, Y] uncovered. Here we need 
to find the transmitter with the maximal Z, let's call it ZD. 

 
When we find these two coordinates, ZL and ZD, for an interval [X, Y], we can 

calculate the coverage of an interval as: Y - X - max{0, ZL – ZD}. The task is now 

unfolded into two parts: the first will calculate ZL for every interval, and the 
second ZD in a similar way. 

 
Now we will explain how to calculate ZL. We can notice that for every transmitter 

it is sufficient to observe only the part of signal located to the right of it. 
 

We will sweep through all the buildings from left to right. By doing so, we will 
maintain a structure which will contain some of the transmitters from the 

buildings we have already swept through. The transmitters in the structure will be 
sorted in ascending order according to their abscissa. In the structure, each 

transmitter is paired with a point on the X axis which marks the place where the 
coverage of that transmitter begins, if we take into account the buildings we have 

swept so far (the coverage extends from that point to the right). 
 

Now we will demonstrate an important property of this structure. For a 

transmitter O, we mark XO as its abscissa, HO as its height and TO as its paired 
point, more specifically the abscissa of that point. Let us also define the predicate 

better. For a pair of transmitters A and B we say that A is better than B if TA < 
TB. Let us assume that there are two transmitters in the structure: A and B, with 

XA < XB being true. If HA <= HB is true, transmitter B can be left out because A is 
better. Let us assume, therefore, additionally that HA > HB is true. If TA < TB, 

transmitter B can be left out, because A will always be better. 
 

Taking this property into consideration, we are left with the following 
consequences: the heights of the transmitters in the structure are going to be 

descending and the abscissa of the paired points are going to be ascending. 
 

Now we can easily come up with an algorithm which is applied to each building 



we come across (while sweeping through them from left to right). Initially, we 

leave out all transmitters from the end of the structure which are of equal or 

lower height than the current building. If the current building has a transmitter on 
it, we add it to the structure and ZL for this interval is equal to X (the abscissa of 

the current building's transmitter). If the current building doesn't have a 
transmitter, we observe the last two transmitters in the structure. Now we 

update their paired points (maybe they will be changed after the addition of the 
last building). If, after the update, the last transmitter doesn't comply with the 

structure's property (TA > TB, where A is the second-to-last, and B the last 
transmitter in the structure), we leave it out of the structure. This procedure is 

repeated while possible (in other words, until the last transmitter complies with 
the structure's property) while always updating the paired point of the second-to-

last transmitter. 
 

We can notice that we won't need to update the paired points of the other 
transmitters in the structure after we've finished this procedure for a building 

because they do not change. Let us assume the contrary, we have two 

transmitters: A and B, XA < XB, HA > HB and TA >= TB, and A needs to be updated 
and B does not. We construct a line PA through points (XA, HA) and (TA, 0) and a 

line PB through points (XB, HB) and (TB, 0). The last condition means that the 
current wall intersects with PA and doesn't intersect with PB. However, that is 

impossible because then B would not comply with the structure's property. More 
specifically, the condition TA >= TB would not be met. 

 
When we sweep through all buildings from left to right, a very similar procedure 

is repeated in the same way on the opposite side and this gives us arrays ZL and 
ZD from which we construct the final solution. 

 
In this task's solution, we sweep through all buildings twice, maintaining the 

structure which can be implemented as a stack. Every step of going through the 
buildings is of constant complexity because when sweeping through all buildings, 

we insert and leave out each transmitter exactly once. Given the fact that all the 

structure's operations are of linear complexity, the final solution's complexity is 
also linear, O(n), where n is the number of buildings. 

 
Necessary skills: mathematics, amortized analysis 

Category: ad hoc 
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