

CROATIAN OPEN COMPETITION IN
INFORMATICS 2013/2014

ROUND 1

SOLUTIONS

COCI 2013/2014 Task TRENER

1st round, September 28th, 2013 Author: Marin Tomić

We need to count which letters of the alphabet appear in input at least 5
times as the first letter of a surname. This can be accomplished using an
array of size 26 and counting the number of occurrences of each first letter
while reading the input. After that, it is sufficient to iterate over that array
once and output the letters with count at least 5. It is also necessary to keep
track whether any letter satisfied the condition and output “PREDAJA” if this
was not the case.

Refer to the solution source code for implementation details.

Necessary skills: arrays, for loop, strings

Category: ad-hoc

COCI 2013/2014 Task KUŠAČ

1st round, September 28th, 2013 Author: Adrian Satja Kurdija

It can be shown that the following cutting strategy is optimal. We arrange
the sausages in a single line, one after the other (thus obtaining a line
segment consisting of N shorter line segments). Cutting this line into M
equal segments yields the required solution.

Although we are conceptually making M - 1 cuts, some of them are not
actual cuts, but fall between sausages (shorter line segments) instead. For
example, with two sausages and four tasters, the first cut is real, dividing
the first sausage in half, the second cut is not real because it is actually
between the two sausages, and the third cut is real, dividing the second
sausage in half.

We therefore need to count the “between” cuts. For the Kth cut to be a
between-cut, the first K out of the M portions must consist of the first X
sausages, where X is a integer. In other words, (K / M) out of N sausages
equals X sausages. X can then be obtained: X = (K * N) / M. It is now clear
that X will be an integer (and the cut a between-cut) if M divides K * N. We
can simply use a for loop to check, for each possible K from 1 to M - 1,
whether it is a real cut or a between-cut.

Alternatively, there is an explicit formula: solution = M - gcd(N, M). Proof is
left as an exercise for the reader.

Necessary skills: for loop, fraction and integer multiplication

Category: ad-hoc

COCI 2013/2014 Task RATAR

1st round, September 28th, 2013 Author: Matija Bucić

The first step towards solving this problem is finding a way to quickly
compute the total income of a rectangular field. We will first describe a good
solution of that subproblem.

It is possible to precompute in advance a N-by-N matrix P, where P[x][y]
cotains the sum of values in the rectangle with opposite corners in (0, 0) and
(x, y). For the purposes of this probem, it is sufficient to calculate the matrix
values with O(N4) time complexity, iterating over the whole rectangle for
each matrix cell. Of course, it is possible to carry out the computation in
O(N2), which is left as an exercise for the reader.

This precomputation is useful since we can then determine the total income
of any rectangle in time O(1) instead of O(N2) using the inclusion –
exclusion formula:

sum(x1, y1, x2, y2) = P[x2][y2] - P[x1 - 1][y2] - P[x2][y1 - 1] + P[x1 - 1][y1 -
1]

A simple way of finding all valid rectangle pairs is trying out all possible
quadruples of points as opposite corners of the two rectangles and checking
whether they have the same sum using the formula above. This solution has
a complexity of O(N8) and yields 20% of points.

The solution above can be easily optimized by iterating over triples instead
of quadruples, immediately fixing the common vertex of the two rectangles.
This reduces the complexity to O(N6) and yields 40% of points.

For the final optimization, we can exploit the fact that individual unit square
incomes are restricted to the interval between -1000 and 1000, which
means that the total income of any rectangle falls between -1000 * N2 and
1000 * N2. Since N is at most 50, we can use an array of size 2000 * N2 to
count the rectangles with each possible total income.

We will demonstrate the idea on the case of rectangles sharing the upper left
and lower right corners, as in the picture. We first iterate over all possible
common rectangle vertices. Then, for a fixed common vertex, we iterate
over all possible upper left corners of rectangle 1 and use the array to track
the number of rectangles 1 for each possible sum. After that, we iterate over
all possible lower right corners of rectangle 2 and, for each rectangle 2 with
a sum S, look up the number of rectangles 1 with the same sum S and add
that number to the solution. We repeat an equivalent procedure for
rectangle pairs sharing the lower left and upper right corners.

The complexity of the algorithm described above is O(N4) and it is sufficient
to score 100% of points. Refer to the solution source code for
implementation details.

Necessary skills: matrices, auxiliary arrays, preprocessing

Category: ad-hoc

COCI 2013/2014 Task LOPOV

1st round, September 28th, 2013 Author: Domagoj Ćevid

The problem can be solved using a simple greedy algorithm. We first sort
the jewellery pieces by value. Then, for each piece of jewellery starting with
the most valuable, we do the following:

• we choose the bag with the smallest maximum mass out of bags that
are able to store the current piece of jewellery, if there is such a bag
available; we remove that bag from the set of available bags and add
the value of the current jewellery piece to the solution

• if there is no available bag that can store the current piece, we skip
the piece and continue

In order to implement the above algorithm, we need a data structure
efficiently supporting the following three operations: insert a number, find
the first number larger than some number x (or report there is no such
number), remove a number. If using C++, a standard STL structure –
multiset – can be used for this purpose.

Pascal programmers will need some more effort to solve this problem. For
them we recommend the following algorithm, with a very similar basic idea
as the algorithm above.

While the above algorithm requires coding a balanced binary tree or a
Fenwick tree, the following algorithm requires only sorting and the binary
heap, which are somewhat simpler to implement.

The binary heap is a data structure supporting three operations: insert a
number, find the maximum number, remove the maximum number. It is
one possible implementation of a priority queue (for example, in C++ STL).

The algorithm is as follows:

• sort the jewellery and bags together in a single array by mass/capacity
• iterate over the sorted array starting with the minimum mass/capacity
• if the current item is a jewellery piece, insert its value into the heap
• if the current item is a bag and if the heap is not empty, take the most

valuable piece of jewellery so far (which is guaranteed to fit into the

current bag because of the sorting), remove it from the heap and add
its value to the solution

The proof that the above two algorithms are correct is left as an exercise for
the reader.

Necessary skills: heap or multiset, greedy algorithms

Category: greedy algorithms

COCI 2013/2014 Task ORGANIZATOR

1st round, September 28th, 2013 Author: Domagoj Ćevid

Notice that the solution equals the size of a team multiplied by the number
of participating clubs, while a club participates if it has a member count
divisible by the team size.

The easiest method to count the participating clubs for some team size S is
iterating over all club sizes and counting clubs that have a size divisible by
S. The complexity of this algorithm is O(N * maxS), where maxS is the
maximum club size, because the team size can be any value between 1 and
maxS, and counting for each team size takes O(N).

We need a faster method of counting the competing clubs. Since club sizes
are limited to 2 million, we can use an array a of size maxS to store, for
each possible size, the number of clubs with that size.

In order to count the participating clubs for some team size d, we need to
compute the sum: a[d] + a[2 * d] + a[3 * d] + ..., which requires maxS / d
steps.

Trying out all possibilities for d from 1 to maxS requires maxS / 1 + maxS /
2 + maxS / 3 + ... + maxS / (maxS - 1) + 1 steps, which approximately
equals maxS * lg maxS. Thus, the complexity of this algorithm is O(maxS *
lg maxS), which is sufficient to score all points.

Necessary skills: array manipulation, complexity calculation

Category: ad-hoc

COCI 2013/2014 Task SLASTIČAR

1st round, September 28th, 2013 Author: Marin Tomić

Let us first solve a simpler version of the problem, where the robot doesn't
stop upon finding a matching serial number, but tries out all N segments
instead.

Let f(W, S) be the number of suffixes of string S that have W as a prefix. Let
S[x..y] denote a substring of S from position x to position y.

The number of comparisons that the robot will make for a word W with
length L is then:
BS + f(W[1..1], S) + f(W[1..2], S) + ... + f(W[1..i], S) + ... + f(W[1..L], S),
where BS is the total number of segments that the robot has started
comparison with. With our simplification assumption, BS always equals N,
beaus the robot doesn't stop comparison upon finding a matching word.

A more efficient way to compute f(W, S) is needed. One possible method is
building a suffix array of S. A suffix array is a set of all suffixes of a string S
sorted lexicographically. Binary search can be applied to the suffix array in
order to find the interval of suffixes beginning with the character W[1]. Let
us denote this interval by [l1, r1]. The value of f(W[1..1], S) then equals r1 -
l1 + 1. Next, within this interval, we need to find the interval of suffixes with
W[2] as the second letter, [l2, r2]. f(W[1..2], S) is then r2 – l2 + 1. We
repeat the procedure for all remaining characters in W.

The complexity of this search is O(L * lg N), which is fast enough since the
sum of all query lengths will not exceed 3 000 000.

What about the full problem, where the robot stops upon finding a match?

For each word i, let us denote the first position where it appears with pi. Let
g(W, S, p) be the number of suffixes of string S with the prefix W starting at
a position less than or equal to p. We can now derive a new formula for the
total number of comparisons:
BS + g(W[1..1], S, pi) + ... + g(W[1..L], S, pi),
where BS now equals pi since we stop comparing after that position.

In order to make computing the function g easier, we will not respond to
queries in the order that they appear in input, but sort them in a suitable
order instead and store the solutions in an array. After computing all the
solutions, we can output them in the original order.

We will sort the queries by pi in ascending order. We will also utilize a
structure supporting two operations: add 1 to some position, find the sum of
an interval. This structure will enable us to find the number of important
prefixes in an interval. It can be implemented using a Fenwick tree or an
interval (tournament) tree.

We will process queries as follows:

• suppose we are currently responding to a query first matching at pi
• in the structure, we set 1 to corresponding positions for all suffixes up

to pi; notice that it is not necessary to do so for all suffixes for each
query, but only for suffixes after the one we stopped at in the previous
query, since the queries are sorted by pi

• as in the simpler version of the problem, we find the intervals [l1, r1],
[l2, r2], ..., [lL, rL]; however, we do not add ri - li + 1 to the solution,
but instead the sum of the interval [li, ri] in the structure, which
corresponds to the number of suffixes starting at position pi or less in
the interval [li, ri] in the suffix array

• we store the result into the solution array at the appropriate position

Finally, we just need to output the solution array.

There is one more detail left unresolved: how do we compute the numbers
pi? Upon finding the last interval [lL, rL] for some word W, we know that all
suffixes from that interval have W as a prefix. The first position where W
appears is thus the starting position of the leftmost of those suffixes, that is,
the suffix with the smallest index. We therefore need a structure for finding
the minimum number in an interval. This can be done using an interval tree
or a similar structure.

Refer to the solution source code for implementation details.

There are multiple algorithms for building a suffix array with varying
complexities that can be found on the Internet. The official solution uses an
algorithm with complexity O(N * lg2 N). Also, both an interval tree and a
Fenwick tree are implemented in the official solution. The complexity of a
query in both structures is O(lg N).

The total complexity of the algorithm is O(N * lg2 N + query_lengths_sum *
lg N).

Necessary skills: advanced data structures (suffix array, interval tree,
Fenwick tree), binary search

Category: strings, data structures

