

CROATIAN OPEN COMPETITION IN

INFORMATICS 2012/2013

ROUND 6

SOLUTIONS

COCI 2012/2013 Task BAKA

6th round, March 9th, 2013 Author: Adrian Satja Kurdija

We have to do a for-loop through the string and for each character (letter)

determine on which digit of the phone it is found.

Let us make an auxiliary string where we keep the starting letters on the

digits (A, D, G, J, M, P, T, W). For a given letter we will iterate through the

auxiliary string and locate the last letter in it that is less than or equal to
the given letter (for example, if a given letter is O, the corresponding

letter in the auxiliary string is M). We can now replace the given letter
with the found letter since it is a letter that belongs to the same digit. Now

we easily determine this digit Z using the position of the found letter in
the auxiliary string and increase the final solution by Z + 1.

Neccessary skills: string operations, nested for-loop

Category: ad hoc

COCI 2012/2013 Task SUME

6th round, March 9th, 2013 Author: Adrian Satja Kurdija

We will leave the case N = 2 as a practice to the reader. If N is at least 3,

observe the first three (unknown for now) elements of the array and their
mutual sums (read from the matrix):

a + b = s1,
b + c = s2,
c + a = s3.

Summing these equations we get 2a + 2b + 2c = s1 + s2 + s3, and then

a + b + c = (s1 + s2 + s3) / 2.

Now a = (a + b + c) - (b + c) = (s1 + s2 + s3) / 2 - s2.

Knowing the first element of the array, we easily determine the others: ith

element is equal to the sum of the first and ith element (this sum is read
from the matrix) decreased by the first element.

If we want to avoid the above mentioned math, limitations for the

elements given in the task allow us to try all possible values for the first
element of the array. For each of these posibilities we generate other

elements of the array as shown in the previous paragraph and test the
correctness of the array by summing any two elements different from the

first. The question of why it works is left as an exercise to the reader.

For practice, consider this task where the cases that there is no solution or
that there are infinitely many solutions are possible and to be detected.

Necessary skills: mathematical analysis of the problem

Category: math

COCI 2012/2013 Task DOBRI

6th round, March 9th, 2013 Author: Ivan Mandura

A naive solution, trying all possible combinations of three elements for
every i, is too slow. Its complexity is O(N4) and is worth 40% points.

Since the values in the array are small, we can have an array P which tells

us if there exists a certain value in the array before the current position i.
More precisely, P[x] = 1 if there is a value x in the array A before the

position i, else P[x] = 0. Using that, we can improve our starting
solution. Instead of trying every possible combination of three elements,

we try every possible pair of positions (j, k) less than i and ask if there is

a value A[i] - A[j] - A[k] in the array before i. We have that information
in the array P on the position A[i] - A[j] - A[k]. After processing the

position i, we set P[A[i]] = 1. We have thus achieved the complexity of
O(N3) and 70% points.

For 100% points we need an algorithm with a time complexity of O(N2).

Instead of asking if there is a value A[i] - A[j] - A[k] for each pair (j, k)
in the array before i, we can ask for every position j if there is a pair of

values before i such that their sum is equal to A[i] - A[j]. We can again
use the array P to answer that, because the sum of two small numbers is

also a small number. After processing the position i, for every pair (i, j)
with j ≤ i we set P[A[i] + A[j]] = 1. Using this optimization we get a

solution that is fast enough and that achieves full points.

Notice that the space complexity of the algorithm is O(max Ai), but if

there were larger numbers in the task, we could use a balanaced tree
instead of the array P. In C++ we can use set and map. We would thus

get a solution of a space complexity O(N) and time complexity O(N2 log
N) which was worth 70% points in this task.

Necessary skills: array operations

Category: ad hoc

COCI 2012/2013 Task BUREK

6th round, March 9th, 2013 Author: Adrian Satja Kurdija

Let us take a look only at the cuts x = c (solution for cuts y = c is
analogous).

Notice the pastries that are cut by a line x = c are not completely left nor

completely right to the line. The solution for this line is therefore:

N - number_of_pastries_left(c) - number_of_pastries_right(c).

We will calculate the function values of number_of_pastries_left(x) and

number_of_pastries_right(x) before reading the cuts (therefore answering

to each cut in a constant time complexity). We calculate the values using
the following relation:

number_of_pastries_left(x) = number_of_pastries_left(x - 1) +

number_of_pastries_with_a_rightmost_point_equal_to(x)

and an analogous relation for the second function. We read the values of

the auxiliary function
number_of_pastries_with_a_rightmost_point_equal_to(x) from an array

whose elements we increase during the input of the pastries.

An alternative solution uses a sweep-line algorithm and is left as an
exercise to the reader.

Necessary skills: precomputing

Category: sweep

COCI 2012/2013 Task JEDAN

6th round, March 9th, 2013 Author: Anton Grbin

The relief can be seen as a histogram. A histogram is good if it can be
made using the moves shown in the task.

Notice that every histogram is good if and only if it satisfies the following
three conditions:

 the first and the last column have a height of 0
 the difference between two adjacent columns is at most 1

 no column has a negative height

Proof. It is easily seen that a move in the task does not disrupt these
three conditions. The first because we never increase the first or the last

column, the second because we increase the column by 1 on the interval
where every height is the same and we don't change the borders of the

interval. The third because we only increase the relief.

Since the initial situation satisfies the conditions and a move does not
disrupt them, we have proved one direction of the claim.

We now have to prove that every good histogram can be achieved by a
series of moves.

Let us choose every column of a height 0 in a good histogram. There are
at least two of them: the first and the last. Between every two non-

adjacent zeros we make a "reverse move" by reducing every column
between those two by one. Since the second condition is valid, we have at

least doubled the number of zeros in the histogram using the moves we
have made. We repeat this procedure until every column in the histogram

has a height of 0. The moves we have made bring us to the starting
histogram. Thus, the statement is proved.

Solution

The solution is possible to construct in a quadratic complexity by

calculating the number of ways to set hights of the first K columns so that

the last column has a height of H, for each state (K, H). Since the height
of this column depends only on the height of the previous column, the

relation is of constant complexity. The solution is memory efficient if
implemented iteratively, remembering O(n) states of the previous

iterations.

Necessary skills: mathematical analysis of the problem, dynamical

programming

Category: dynamical programming

HONI 2012/2013 Task BAKTERIJE

6th round, March 9th, 2013 Author: Ivan Katanić

Take a look at a bacterium: its state can be described using three
parameters X, Y and C, where X and Y present a row/column mark of the

cell in which the bacterium currently is, and C is the direction bacterium is
facing. If we simulate the movement of the bacterium, we can notice the

bacterium will eventually encounter a state it had been in before and,
since the rules of moving do not change, the bacterium has closed the

loop in which it will cycle forever (or by the end of the game). The path of

the bacterium will be as shown in the picture:

Circles present the states of the bacterium, and arrows its movement. Part

of the path which is not in the loop is called “tail”. Let Li be the number of

states in the loop of the i-th bacterium, and Ti,X,Y,C the second in which
the bacterium first encountered a state (X, Y, C). If the state (X, Y, C) is

on the “tail”, this second is the only one in which the bacterium is in a
state (X, Y, C), and if it is in the loop, it will be there in seconds t =

Ti,X,Y,C + k * Li, k ≥ 0.

Assume that in the final second of the game the bacterium i will be in a

state (Xe, Ye, Ci), where Xe, Ye marks a trapped cell. If some bacterium is
in that state for the first and the only time (regardless of the game end),

then it is trivial to check if other bacteria will be in the final state in that
second. If not, we have a system of K equations:

 t = Ti,X,Y,C + ki * Li, ki ≥ 0,

which can also be presented using congruences:

 t ≡ Ti,X,Y,C (mod Li), with t ≥ Ti,X,Y,C.

This problem is solved using a Chinese remainder theorem

(http://en.wikipedia.org/wiki/Chinese_remainder_theorem). Since the

theorem offers a solution if the modules (Li in our case) are pairwise

comprime, we have to split every Li to comprime factors (powers of

primes). We thus get a greater number of equations but the modules will

http://en.wikipedia.org/wiki/Chinese_remainder_theorem

now be pairwise comprime. In case there are two powers of the same

prime number p among the modules, we can eliminate the smaller one

because the remainder of division by it is uniquely determined from the

remainder of divison by the greater one (if they do not match, there is no

solution).

After we find the solution, we cannot forget the conditions t ≥ Ti,X,Y,C : if

our solution t does not satisfy them, we simply increase it sufficient

number of times by the product of all the modules because the Chinese

remainder theorem says that all solutions to the system are congruent

modulo this product. Since the maximum loop length is 10 000 and every

loop is of even length, the product of modules, as well as the solution, fits

in a signed 64-bit integer.

Now we just try all 4K combinations for the third parameter Ci of final

states and take the one that gives us the smallest solution.

Necessary skills: Chinese remainder theorem

Cathegory: math

