

 CROATIAN OPEN COMPETITION IN
INFORMATICS 2012/2013

 ROUND 5

SOLUTIONS

COCI 2012/2013 Task LJESTVICA

5th round, February 16th, 2013 Author: Adrian Satja Kurdija

The basic idea: We use a variable Amin to count accented tones that are
main tones in A-minor, and a variable Cmaj to count accented tones that
are main tones in C-major.

Implementation details: One traversal (using a for-loop) over the input
string is used to find acented tones in the following way: a tone is accented
if it is the first character in the string, or if the previous character was “|”.
For each accented tone, we can use a branching statement (such as if-then-
else or switch-case) to check whether it is equal to “C”, “F”, or “G” (in which
case we increment the variable Cmaj), or to “A”, “D”, or “E” (in which case
we increment the variable Amin).

Finally, it is obvious what we need to output if Amin < Cmaj or if Amin
> Cmaj. If, on the other hand, Amin = Cmaj, we simply need to check
whether the last character of the input string is “A” or “C”, as defined in the
problem statement.

Necessary skills: loops, string manipulation

Category: ad-hoc

COCI 2012/2013 Task ARHIPELAG

5th round, February 16th, 2013 Author: Adrian Satja Kurdija

Let us create a new matrix representing the (untrimmed) future map of the
archipelago. The cells of this matrix are filled in the following way: if the
corresponding cell in the input matrix is a sea cell or a land cell surrounded
by at least three sea cells, the result is a sea cell; otherwise, it is a land cell.

How can we find cells that surround a given cell? If the current cell has
coordinates (r, c), we need to check cells (r, c + 1), (r, c - 1), (r + 1, c),
and (r - 1, c). It can be done using a for-loop with an index i from 1 to 4,
looking at cell (r + u[i], c + v[i]), where the helper arrays u and v are
defined as u[] = {0, 0, 1, -1}, v[] = {1, -1, 0, 0}. However, before indexing
a neighbouring cell, we first need to check whether the cell is outside of the
matrix boundaries. If it is, we assume that it is a sea cell; otherwise, it is
safe to read the cell value.

After determining the future map, we need to find its smallest rectangular
part containing all land cells. It can be done by finding the leftmost,
rightmost, uppermost, and lowermost land cells, using four variables
(min_column, max_column, min_row, max_row), updated as we traverse
the future map and reach a land cell. Finally, we simply need to output
all rows from min_row to max_row, but only cells from min_column to
max_column.

Necessary skills: character matrix manipulation

Category: ad-hoc

COCI 2012/2013 Task TOTEM

5th round, February 16th, 2013 Authors: Nikola Dmitrović, Antun Razum

Since the problem in this task is finding the shortest path, in number of
steps, from the beginning to some position, we can obviously use the
breadth-first search (BFS) algorithm. However, we first need to derive a
graph corresponding to the problem that we can apply BFS to. In this graph,
nodes will correspond to tiles, and edges will exist between some two nodes
if it is possible to step directly from one corresponding tile to the other.

The graph can be constructed in the following way. The numbers chiseled
into tiles can be read into a matrix with N rows and 2*N columns, where
squares not covered by a tile (the first and last cells of even-numbered
rows, numbered from 1) can be set to zero. Another matrix of the same
dimensions can be used to store the corresponding tile index for each
square. Now we can, for each square, iterate over its four neighbouring
squares and add an edge between the current square's and the neighbouring
square's tile iff the cells have different tile indexes (so that we don't add
an edge from a tile to itself) and the squares have equal numbers (the
condition of stepping from one tile to the next). The complexity of this part
of the solution is O(N2) since we have processed each of the 2*N2 squares
once (as the current square) plus at most four times (as the neighbouring
square).

Now that we have constructed the graph, we can apply breadth-first search
starting from the first tile. For each tile, we need to keep track not only of
the distance to the starting tile, but also of the previous tile (the tile that
we stepped directly from when moving to the current tile), so that we can
reconstruct the path later. The complexity of this part of the solution is also
O(N2), since BFS processes each of the N2 nodes once (as the current node)
plus at most six times (since there are at most six neighbouring tiles).

Finally, we need to find the tile with the largest index that we have
reached and, going backwards using the previous nodes stored during BFS,
reconstruct the shortest path by storing the traversed tiles' indexes, from
end to start, in an array. The final solution is the length of the obtained
array and the array itself, output in reverse. The complexity of this part of

the solution is again O(N2) because the shortest path can contain each of
the N2 tiles at most once.

Necessary skills: breadth-first search

Category: shortest path reconstruction

COCI 2012/2013 Task HIPERCIJEVI

5th round, February 16th, 2013 Author: Bruno Rahle

The graph described in the problem statement is a hypergraph. When
solving the shortest path problem on a hypergraph, we can convert it to a
“normal” undirected graph by simply connecting all pairs of nodes (stations)
on the same hyperedge (hypertube) with undirected edges. This results in
a graph with a total of N nodes and M*K*(K-1)/2 edges. A simple breadth-
first search applied to this graph is then a solution, ignoring time and
memory constraints.

However, the constraints prevent such a solution from obtaining all points.
The most elegant way to speed up the solution is adding a new node
for each hypertube, connecting it with undirected edges to all stations
connected to the corresponding hypertube. Such a graph has N+M nodes
and M*K edges. A breadth-first search applied to this graph yields the
solution 2*X-1, where X is the number of stations on the shortest path from
station 1 to station N.

Necessary skills: breadth-first search

Category: graphs

COCI 2012/2013 Task ROTIRAJ

5th round, February 16th, 2013 Author: Matija Milišić

We will arrive at a solution of this problem in several steps. Let us first
simplify the problem.
Notice that each operation has an inverse operation, which is of the same
type, but with the opposite sign, that is, rotating in the opposite direction.
This means that we can obtain the starting sequence by applying inverses of
the input operations, in reverse order, to the final sequence.
Also, notice that any rotation to the left can be replaced with an equivalent
rotation to the right. Rotation of the whole sequence by X to the left can be
replaced by a rotation of the sequence by N - X to the right; analogously for
section rotations.
The next simplification is replacing the numbers in the sequence with their
positions, and then applying operations to the position sequence. It is easy
to restore the original numbers from the positions after finishing with the
rotations.
The problem has been reduced to starting with the sequence (0, 1, …, N-
1) and applying 2 types of rotation-to-the-right operations to it. A simple
simulation of each operation leads to the complexity O(N * Q), which is
sufficient for 40% of total points.
Looking at numbers A and A + K (modulo N), observe that their distance
(modulo N) remains equal to K after any rotation operation. Therefore,
it is sufficient to track only the positions of numbers (0, 1, …, K-1) while
applying rotations. In the end, the positions of the remaining numbers can
be reconstructed as follows: pos[A] = (pos[A % K] + A / K * K) % K.
This improved simulation of each operation has the complexity O(K * Q),
which is sufficient for 70% of total points.
For further optimization, we can track the positions of the numbers (0, 1, …,
K-1) (modulo K). After each operation, their positions are some rotation of
the general form: B, B+1, …, K-1, 0, 1, …, B-1. This rotation can be tracked
by a single global variable representing the total number of rotations to the
right needed to transform the starting sequence of positions to the current
one. Both types of rotations to the right simply add X to this total rotation.
Thus, the position of each of the first K numbers in its current section is
easily obtainable from the total rotation.

To unambiguously determine the position of the first K numbers, and by
extension all N numbers, we also need to track the current section for each
of the K numbers.
An operation of type 1 doesn't change the contents of the sections. An
operation of type 2 can be processed modulo K, with the whole part tracked
by another global variable since it applies to all numbers equally. Looking
at the first K numbers, an operation of type 2 moves a total of X numbers
(where X is the remainder modulo K) to the following section. We also know
exactly which X numbers are moved. From the general form of rotation, we
can see that it applies to the last X numbers of the sequence: B, B+1, …, K-
1, 0, 1, …, B-1. Since these numbers are always contiguous, we can increase
the interval in time O(1). In the array tracking the sections for each of the K
numbers, we add a 1 to the beginning and a -1 to the end of the interval.
The positions of the first K numbers are thus obtained from two parts. One
defines the section that each number is in, and the other defines the position
inside the section. After obtaining the positions of the first K numbers, the
positions of the remaining N - K numbers are derived as described above.
Since each operation is now processed in time O(1), the total complexity is
O(N + Q).

Necessary skills: -

Category: ad-hoc

COCI 2012/2013 Task MNOGOMET

5th round, February 16th, 2013 Author: Anton Grbin

Before understanding the solution of the problem itself, some basic
probability theory is required.

Independent events. If two events are independent, the probability
of both events being realized is equal to the product of their individual
probabilities.

Total probability. A complete set of alternatives is a set of disjoint events
which together cover the entire sample space. If the only methods available
to commute to school are by tram or on foot, then those two events form a
complete set of alternatives for commuting to school. Now, the probability of
an event in the same space can be expressed as follows:

P(A) = P(N1) P(A|N1) + P(N2) P(A|N2) + ...

For the commuting to school example, it can be applied as: the probability
of arriving to school today (P(A)) is equal to the probability of going on foot
(P(N1)) times the probability of arriving if going on foot (P(A|N1)) plus the
probability of going by tram (P(N2)) times the probability of arriving if going
by tram (P(A|N2)).

Input. From the input data it is possible, in a straightforward way, to find
the probability of a player A coming into possession of the ball one second
after a player B had the ball, as well as the probability of each team scoring
if a player C has the ball.

Computation. We will solve the problem in two steps. In the first step, we
find the probabilities of events of the following types:

Pg(X,Y,T) = P({the first player of team X has the ball, T seconds later team
Y scores})
Pm(X,T) = P({the first player of team X has the ball, T seconds later no
team has scored})

where X and Y are the labels of one of the teams, and T is a positive
integer. The probabilities Pm and Pg can be computed using dynamic
programming, with the state {entity, number of seconds, team that had the
ball in the beginning}, and the value for each state being the probability
that the entity has the ball after the number of seconds has passed,
where an entity can be any player or the goal of one of the teams. The
relation relies only on the states in the previous second. In this step we
assume that once a goal is scored, the ball remains in the goal. The time
complexity of the first step is O(N2 * T).

In the second step, we can ignore the individual players and their
probabilities; the state is modelled by {current result, team, number of
seconds}, with the value being the probability that after the number of
seconds since game start, the team has just scored a goal, leading
to the current result. For each state, the previous result is uniquely
determined. The required probability can be decomposed to a complete set
of alternatives which describe the second and the team that scored a goal
in that second leading to that previous result. The solution for the current
state is obtained as the sum, over all the alternatives, of the products of the
probability of the alternative and the probability of a goal just being scored
to obtain the current result, which can be read from the array Pg. The time
complexity of the second step is O(R2 * T2).

Output. The probability of an outcome can also be decomposed to a
complete set of alternatives, describing the second when the last goal was
scored. There must have been no scored goals from that moment to the
end of the game, which is included by multiplying the probability from the
second step with the Pm value for the appropriate time period.

However, if we are processing a winning result (with R goals scored by one
of the teams), we must not multiply in the Pm value, since the game has
ended at that moment and the remaining time period is zero.

Necessary skills: basic probability theory, dynamic programming,
mathematical problem modelling

Category: dynamic programming

