

CROATIAN OPEN COMPETITION IN
INFORMATICS 2012/2013

ROUND 4

SOLUTIONS

COCI 2012/2013 Task OREHNJAČA

4th
 round, January 19th, 2012

Author: Nikola Dmitrović

Each spectator thought he would get K - P + 1 pieces of walnut roll (that is

how many pieces there are in total, marked from P to K). The solution to the

first part of the task is therefore determining the maximum value of K - P +

1 which we calculate for each spectator individually.

As spectators were taking pieces of the wallnut roll, at some point it might

have occured that a spectator could not take a piece that was provided for

them because someone else had taken it already. We therefore create an

array of a maximum lenght of 1000 where we initialize every element to the

value 1 (every piece is in its place). For each spectator marked with i we

sum up the values in the array marked from Pi to Ki; also, in that interval

we change every value 1 to 0 (the piece is not there anymore). During this

procedure we keep the maximum value of the sum.

Necessary skills: loop, array

Category: ad hoc

COCI 2012/2013 Task ESEJ

4th
 round, January 19th, 2012

Author: Ivan Mandura

Let us describe the procedure of determining if a word is nice or not. We

iterate along the word from left to right and keep the array of letters which

we have not been able to pair yet. Assume we have encountered a letter A.

We will check if the last unpaired letter is A: if it is, we can pair it with the

new letter and remove it from the array of unpaired letters. If the last

unpaired letter is B, we must add the new letter A to the array of unpaired

letters (we cannot pair it with some previous A because if we try to connect

the B afterwards, its arch will intersect with the arch from letter A).

Notice that the array of unpaired letters we keep is a stack: a structure

which enables adding elements to the end, having access to the last element

and removing the last element. If the stack is emtpy after we are done

iterating, the word is nice.

Necessary skills: strings, stack

Category: ad hoc

COCI 2012/2013 Task VOYAGER

4th
 round, January 19th, 2012

Author: Nikola Dmitrović

The solution to this task is an implementation of the given conditions. Let us

describe some characteristics of the solution.

At the start, the probe is located in the given position. We have to send the

signal in all four directions (up, right, down, left). We must keep the current

position and the current direction. Once the signal encounters a planet, it

changes its direction.

We keep the current direction as a value marked d (d=0, up; d=1, right;

d=2, down; d=3, left). Let us create two arrays of lenght 4 like this: RS[] =

{-1, 0, 1, 0} and CS[] = {0, 1, 0, -1}. Notice that RS[d] is the shift in rows,

and CS[d] is the shift in columns.

After we check the value in the current cell, we might have to do a direction

correction. We repeat this procedure until the signal leaves the system or

until it encounters a black hole. We perform a direction change using bitwise

XOR, like this:

if planet = '\' then

 d = d XOR 3

if planet = '/' then

 d = d XOR 1

It is easy to check that the above described direction change is correct.

The additional problem is determining a situation in which the signal enters a

cycle. We do that by counting the cells we have already visited. Given that a

signal can travel through a cell in four directions, and the system has N * M

cells, there are 4 * N * M positions in which the signal can be. When a

signal visits more cells than that, it is obviously in a position where it had

been before. The next position depends on the current position only, so the

signal is in a cycle.

Necessary skills: 2D matrix

Category: simulation

COCI 2012/2013 Task RAZLIKA

4th
 round, January 19th, 2012

Author: Goran Gašić

For the sake of simplicity, let us determine N - K numbers which will remain

in the array. This way we actually determine which K numbers should be

removed.

Notice that there is always an optimal solution in which we choose N – K

consecutive numbers in a sorted array.

Proof. Let a and b be the values of the greatest and the smallest chosen

number in an optimal solution. Consider two cases:

1) If there does not exist an unchosen number c in the sorted array from the

interval <a, b>, a subsequence of consecutive elements is chosen and the

proof is finished.

2) Else, determine which number out of a and b has the greater distance to

the set of chosen numbers. We remove it, and pick c instead. The greatest

absolute difference M is now decreased because b - c (or c – a) is less than

b - a. By removing a number we have not increased the smallest absolute

difference m because we have removed the greater of the two differences

(distances). By adding c, the difference of its two chosen neighbours in a

sorted array is divided in two parts, so m is not increased this way. We have

thus proved that each optimal solution can be reduced to the consecutive

subsequence in a sorted array.

Here is a simple solution with a time complexity of O(N2) which sorts the

array, for each of its substrings of the lenght N - K calculates the smallest

and the greatest difference and returns the best solution. This solution is

worth 50% of total points.

Notice that the greatest difference is actually the difference between the first

and the last element of the substring and we can calculate it in a constant

time complexity for each substring. If we keep the last N - K – 1 differences

of consecutive array elements in a structure like balanced binary tree, the

smallest difference can be obtained in constant time complexity, but the

operations of inserting and deleting have a logarithmic time complexity. This

way we lower the complexity to O(N log N). This solution is worth 70% of

total points.

Notice that the elements of the array are limited to the interval of R

integers. We can therefore use a counting sort in the complexity of O(N +

R) to sort them. It is enough to calculate the frequency of each number in

the interval and passing along the frequency array generate a sorted array.

Let us take a look at the data structure we use to keep the differences of

consecutive elements of the array. If the newly inserted difference is smaller

than another difference in the structure, the other one will never be the

smallest becuase it will be deleted before the newly insterted one. Therefore,

the differences can be kept in a monotonous deque with two ends. The

smallest difference in the substring will be the one at the beginning of the

deque. Since N - 1 differences of consecutive elements will be inserted and

deleted exactly once, we lower the time complexity to O(N + R) and achieve

full points.

Necessary skills: monotonous deque, counting sort

Category: data structures

COCI 2012/2013 Task DLAKAVAC

4th
 round, January 19th, 2012

Author: Anton Grbin

Let us present infected people in one day as an object which has a defined

operator *. We want the operator to determine the infected people for the

next day, based on two of the past days. Let us denote the first day with B.

We denote the second and every jth day as K(j). Then we have:

K(1) = B,

K(2) = B * K(1) = B * B.

We can think of a day as an array of 0s and 1s such that there is 1 in the ith

position if the ith person was infected that day. The operator can then be

implemented in a complexity of O(M * M).

Let us take a look at the solution for day 3:

K(3) = B * K(2) = B * B * K(1) = B * B * B = B3.

Here we add an operator of exponentation as a shortened writing of

consecutive multiplication. Let us take a look at the properties of this

operator.

Bi = Bi-1 * B

This is obviously right because we have defined the exponentation as a

shortening for consecutive multiplication.

Bi * Bi = Bi+i

This relation is also true for our operator *. It is now possible, using

logarithmic exponentation, to complete the operation in the complexity of

O(log K * M * M) where K is a day we are interested in.

The algorithm:

power(B, k) =

 if k is even,

 half = power(B, k / 2) if k != 0, or {0, 1, 0, 0, ..} if k = 0

 return half * half

 if k is odd,

 return power(B, k - 1) * B

If k becomes 0, we must return the object which will be the neutral element

for the operator *. In our case it is {0, 1, 0, 0, ..}.

Necessary skills: arrays, mathematical analysis of the problem, logarithmic

exponentiation

Category: math

COCI 2012/2013 Task AKVARIJ

4th
 round, January 19th, 2012

Author: Gustav Matula

The area below the aquarium bottom consists of N - 1 trapezoids. We will

find the way to calculate the area of one trapezoid and then improve it using

data structures for faster work with all of them. For the sake of simplicity,

we calculate the area of the unflooded part below the water level h.

There are three cases for a trapezoid:

 1) Water area is above the entire trapezoid.

 2) Water area is below both upper vertices of the trapezoid.

 3) Water area is between the upper vertices of the trapezoid.

In the first case, the area is equal to the area of the entire trapezoid.

In the second case, the area is equal to the water height h.

In the third case we calculate the area in the form A * h2 + B * h + C

(determining polynomial coefficients is left as an exercise to the reader).

In case there are more trapezoids, for a height h we can divide them into

groups 1), 2), 3) above. From the first group we need the sum of all areas,

from the second we need the number of trapezoids (the total area in this

group is equal to h * number_of_trapezoids), and from the third we need

the sum of corresponding polynomial coefficients, from which we can get a

formula for the area of the group.

The problem is calculating the sum fast enough for each group. If for a given

h we present each trapezoid as a point (Hi, Hi+1), groups become rectangles

as shown below:

Queries on such 2D intervals can be done using a 2D Fenwick tree. In each

element of the structure we store the sum of total areas, number of

trapezoids and three sums of coefficients (A, B and C). This structure is

simply maintained when we change the height, and the complexity of a

query is O(log2 maxh). The total complexity of the algorithm is O((N + M)

log2 maxh).

There are alternative solutions. Instead of maintaining the structure of

trapezoids we can maintain the array of solutions for each h. For each

height, we are interested in the same three cases as before. If we have a

trapezoid (Hi, Hi+1) (for the sake of simplicity assume Hi <= Hi+1), it

contributes to the interval [0, Hi] with its total area, to the interval (Hi, Hi+1)

with its formula (see case 3), and to the interval [Hi+1, maxh] with

increasing the number of trapezoids by 1. The array of solutions can once

again be achieved as a Fenwick tree or a tournament tree and the

complexity of an operation is then O(log maxh), in total O(N log maxh).

Necessary skills: Fenwick tree or tournament tree

Category: geometry, data structures

