

CROATIAN OPEN COMPETITION IN

INFORMATICS 2012/2013

ROUND 3

SOLUTIONS

COCI 2012/2013 Task SAHOVNICA

3rd round, December 15th, 2012 Author: Adrian Satja Kurdija

There are multiple different approaches to this problem: we can use a matrix

of characters, but we don't need to.

First method

Using two for loops, where one iterates over the total number of output

rows, and the other (nested) over output columns, we output the

appropriate characters. Here, we need a function to determine, given the

current row and column (r, c), whether the character is red or white.

Notice that, if we number the rows and columns from 0 (in which case

relations 0 ≤ r < R * A and 0 ≤ c < C * B hold), the transformation (r, c) →

(r div A, c div B) results in the row and column of the corresponding

chessboard cell (where 0 ≤ r div A < R, 0 ≤ c div B < C). A simple

observation leads to the conclusion that the cell is red if the sum of the row

and column (r div A + c div B) is even, and white otherwise.

Second method

We use a character matrix in which we draw one by one chessboard cell. We

choose the current cell using two nested for loops and draw it, again using

two nested for loops. Here we need to compute the starting coordinates of

the current chessboard cell: they are (1 + r * A, 1 + c * B), where r and c

(0 ≤ r < R, 0 ≤ c < C) are the row and column of the cell, and the character

matrix is indexed from (1, 1).

Necessary skills: nested for loops, simple mathematical observation

Category: ad-hoc

COCI 2012/2013 Task POREDAK

3rd round, December 15th, 2012 Author: Adrian Satja Kurdija

We need to read two arrays of N strings each and, for every two strings in

the first array, find the positions of the same strings in the second array. If

the positions are in the correct order, we add 1 to the result; finally, we

output the result.

How can we find the position of a string in the second array? One method is

using simple for loops, but the resulting time complexity is then O(N2) for

choosing all pairs of strings in the first array, times O(N) for finding the

positions of the two selected strings in the second array (we will ignore the

complexity of string comparison, which is proportional to string length),

totalling O(N3). For the given N, such a program would be too slow.

In order to reduce the complexity to O(N2), after choosing a pair of strings,

we need to immediately (in constant time) find the position of the k-th

string from the first array in the second array. In order to do that, we need

to find those positions in advance.

One method is to, before finding the solution, for each k-th string from the

first array, use a for loop to find its position in the second array and store it

in an auxiliary array. This sounds similar to the slow method above, but

there is an important difference: we iterate over the second array O(N)

instead of O(N2) times. The total complexity is O(N) times O(N) for the

described auxiliary array precomputation, plus O(N2) for checking all pairs,

totalling O(N2), which is fast enough.

Even though it isn't necessary with the given constraints, readers are

encouraged to devise an even faster, O(N log N) solution.

Necessary skills: string comparison, precomputing (computing auxiliary

data before the main algorithm)

Category: ad-hoc

COCI 2012/2013 Task MALCOLM

3rd round, December 15th, 2012 Author: Adrian Satja Kurdija

A solution that, for each string, iterates over the previous K strings and

counts the strings with the same number of letters, is too slow.

A faster solution reads a string, counts its letters – let us denote the number

of letters with L – and then immediately, without another for loop, answers

the question: how many strings, out of the previous K, have exactly L

letters?

In order to find that number quickly, we need to keep an auxiliary array with

the corresponding count for each L. This array must, of course, be

maintained: upon reading a new string with length L, we increment the L-th

element of the auxiliary array by one, and decrement the L’-th element by

one, where L’ is the length of the string “falling out” of the last K strings

interval, i.e. not included in the set of friends of upcoming strings anymore.

This solution is actually based on the sweep-line principle: the imaginary

scanner is scanning through the rankings list and processing events such as

new name added and name removed from friends set.

Necessary skills: using auxiliary arrays to speed up algorithms

Category: sweep

COCI 2012/2013 Task AERODROM

3rd round, December 15th, 2012 Author: Adrian Satja Kurdija

It is possible to implement a solution that, for each person, computes (fast

enough) the desk where the person will finish check-in soonest. It can be

done using, for example, a priority_queue structure; details are left as an

exercise to the reader. Such a solution has a complexity of O(M log N).

Notice that this greedy solution is also optimal: if every person selects a

desk that is optimal for them, it is possible to order all of them in such a way

that they don't have to pointlessly wait for one another, leading to such

behaviour being optimal for the whole team. Consider why that is correct.

In any case, the solution above isn't fast enough for M = 1 000 000 000. A

solution that is fast enough, with complexity O(N log M), uses binary

search: we need to find the earliest time in which the whole team can finish

check-in, which requires being able to tell, for any time T, whether it is

smaller or larger than the optimum – whether M people can finish check-in

in time T or not.

How can we check that? For each desk k, we compute how many people that

desk can process in time T (which is T div Tk), and compute the sum of the

obtained numbers. If the sum is greater than or equal to M, it is possible to

process M people (under the assumption that they select desks using a

sufficiently smart strategy); otherwise, it is obviously impossible.

The algorithm should be clear now: we keep an upper and lower binary

search bound, select a number T which is the average of the two bounds,

determine (as described above) whether it is larger or smaller than the

optimal solution and, based on that, move the upper or lower bound to T,

halving the interval of potential solutions until only one number remains.

Necessary skills: binary search

Category: binary search

COCI 2012/2013 Task HERKABE

3rd round, December 15th, 2012 Author: Adrian Satja Kurdija

First solution

From the given words we can build a trie, also known as a prefix tree

(http://en.wikipedia.org/wiki/Trie). Imagine that we are in the root of the tree

and can see M subtrees. In each subtree, the words begin with the same

letter, and that letter is different for all M subtrees: we need to first choose

all words from one of the subtrees, then all words from another subtree, and

so on. Therefore, we can reduce the problem to M separate subproblems

which can be solved recursively.

If we have determined, for the k-th subtree (using recursion), that words of

that subtree can be ordered in Ak ways, then the total number of orderings

of all subtrees is the product of those numbers (A1 * A2 * … * Ak * … * AM).

However, we also need to include the number of orderings of the subtrees

themselves, which is M! and must be included in the product.

The prefix tree must be implemented carefully in order to be fast enough

and not use up too much memory.

Second solution

Based on a similar idea, but simpler to implement (without prefix trees). We

sort the words alphabetically. Next, we look at the first letter of all words

and find M blocks such that all words in a block have the same first letter. As

in the first solution, the result is M! times the product of solutions for

individual blocks.

In the recursion, we need to find subblocks for each of the blocks. However,

now we can ignore the first letter, since we know it is equal for all words in a

block, so we can consider only the second letter. Analogously, in the deeper

levels of recursion, we only need to consider the letters in positions

corresponding to the current level. We conclude that the total complexity of

the recursion is proportional to the total number of letters. Of course, the

http://en.wikipedia.org/wiki/Trie

recursion here will be parameterized by the lower and upper bound of the

current block and the index of the letter we need to observe.

Necessary skills: recursion, tries

Category: strings

COCI 2012/2013 Task PROCESOR

3rd round, December 15th, 2012 Author: Ivan Katanić

Let us consider the N 32-bit registers as N * 32 binary variables. At first

glance, the problem looks like a textbook 2SAT problem example

(http://en.wikipedia.org/wiki/2-satisfiability). However, given the small time

and memory limits, such a solution isn't efficient enough to obtain all points

for the task.

Notice that, if any solution exists, at least one more solution must exist, and

it can be obtained by inverting the bits of all the registers from the first

solution.

It follows that the following algorithm is correct:

1. Find a still unset binary variable b.

2. Set the value of b arbitrarily (to either 0 or 1).

3. Set the value of all binary variables that were ever XOR-ed with b,

since we can now determine their value unambiguously.

4. If there are no unset variables left, stop; otherwise, return to step 1.

If, in step 3, we try to set a variable that is already set to the opposite

value, we have found a contradiction and there is no valid solution. Notice

that setting another value in step 2 would again lead to a contradiction in

the same step 3, since XOR implications are bidirectional.

In the beginning we can therefore set any variable to either 0 or 1, because

there are at least two solutions with opposite values of all variables. After

the other three steps of the algorithm, we have a smaller remaining set of

unset variables which has no relation to the already set variables, so we can

apply the same rule (there are at least two solutions) and set any variable to

either 0 or 1 and repeat the procedure.

We will choose the unset variable and its value in step 1 in such a way to

obtain the lexicographically smallest solution: we find the most significant

unset bit of the first register which still has unset bits, set its value to 0 and

continue with step 2.

http://en.wikipedia.org/wiki/2-satisfiability

The small memory limit requires implementing step 3 iteratively (using, for

example, a queue). The time complexity is O(N + E).

Necessary skills: bitmask manipulation, queues

Category: ad-hoc

